Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1863(11): 183708, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34310911

RESUMO

In recent decades, several epimers of peptides containing d-amino acids have been identified in antimicrobial sequences, a feature which has been associated with post-translational modification. Generally, d-isomers present similar or inferior antimicrobial activity, only surpassing their epimers in resistance to peptidases. The naturally occurring l-Phenylseptin (l-Phes) and d-Phenylseptin (d-Phes) peptides (FFFDTLKNLAGKVIGALT-nh2) were reported with d-epimer showing higher activity against Staphylococcus aureus and Xanthomonas axonopodis in comparison with the l-epimer. In this study, we combine structural (CD, solution NMR), orientational (solid-state NMR) and biophysical (ITC, DSC and DLS) studies to understand the role of the d-phenylalanine in the increase of the antimicrobial activity. Although both peptides are structurally similar in the helical region ranging from D4 to the C-terminus, significant structural differences were observed near the peptides' N-termini (which encompasses the FFF motif). Specific aromatic interactions involving the phenylalanine side chains of d-Phes is responsible to maintaining the F1-F3 residues on the hydrophobic face of the peptide, increasing its amphipathicity when compared to the l-epimer. The higher capability of d-Phes to exert an efficient anchoring in the hydrophobic core of the phospholipid bilayer indicates a pivotal role of the N-terminus in enhancing the interaction between the d-peptide and the membrane interface in relation to its epimer.


Assuntos
Peptídeos/metabolismo , Sequência de Aminoácidos , Calorimetria , Membrana Celular/metabolismo , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Ligação Proteica , Estereoisomerismo
2.
BMC Complement Altern Med ; 19(1): 284, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31660940

RESUMO

BACKGROUND: Stem bark of Luehea ochrophylla (L. ochrophylla) is used by the traditional Brazilian medicine for treatment of rheumatic diseases and tumors. This study aimed to investigate inhibition of acute and chronic inflammations and cytotoxic activity of extracts, fractions, and isolated compounds from L. ochrophylla. METHODS: Hexane (HE) and ethanol (EE) extracts obtained from stem bark of L. ochrophylla were submitted to chromatographic fractionation. In order to test acute inflammation, experimental model of impact injury was used, followed by transdermal application of gels using phonophoresis. Histological analysis was based on scores assigned by the capacity of decreasing the lesion. To evaluate the effect EE and fractions on cell proliferation, human lymphocytes were stimulated with phytohemagglutinin and analyzed using flow cytometry. Proliferation was measured using VPD 450 staining and the calculated proliferative index (PI). The cytotoxic activity was evaluated using MTT colorimetric method against MDA-MB-231, MCF-7, HCT-116, and Vero cells. GraphPad Prism Version 5 was used for statistical analysis. RESULTS: HE and EE provided friedelin, ß-friedelinol, lupeol, mixture of lupeol and pseudotaraxasterol, ß-sitosterol, betulinic acid, mixture of lupeol and taraxasterol, (-)-epicatechin, ß-sitosterol-3-O-ß-D-glucopyranoside, and (+)-epicatechin-(4ß-8)-epicatechin. HE, ethyl acetate fraction (AF), betulinic acid, and ß-sitosterol promoted regeneration of muscle fibers caused by muscle injury. AF significantly (p < 0.05) reduced the lymphocyte proliferation index (1.36 for cultures stimulated with PHA, 0.7 for untreated cultures and 0.12 for cultures stimulated with PHA and treated with AF 25 µg/mL and AF 50 µg/mL, respectively). ß-Sitosterol-3-O-ß-D-glucopyranoside exhibited high cytotoxic activity (IC50 = 1.279 µg/mL) against HCT-116 cell line. CONCLUSION: These results suggest that extracts, fractions, and chemical constituents from L. ochrophylla decreases inflammatory processes generated by muscle injury. The anti-inflammatory activity may be justified by high inhibition of T cell proliferation. These extracts, fractions, and chemical constituents from L. ochrophylla may be useful as a therapeutic agent against rheumatic diseases. Moreover, chemical constituents from L. ochrophylla show potent cytotoxic activity against colon and rectal carcinomas.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Malvaceae/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Extratos Vegetais/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...