Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 938: 173197, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38772490

RESUMO

The presence of plastics in the oceans has already become a pervasive phenomenon. Marine pollution by plastics surpasses the status of an emerging threat to become a well-established environmental problem, boosting research on this topic. However, despite many studies on the main seas and oceans, it is necessary to compile information on the South American Atlantic Ocean Coast to identify the lack of research and expand knowledge on marine plastic pollution in this region. Accordingly, this paper conducted an in-depth review of monitoring methods, sampling, and identification of macroplastics and microplastics (MPs) in water, sediments, and biota, including information on legal requirements from different countries as well as non-governmental initiatives. Brazil was the country with the highest number of published papers, followed by Argentina. MPs accounted for 75 % of the papers selected, with blue microfibers being the most common morphology, whereas PE and PP were the most abundant polymers. Also, a lack of standardization in the methodologies used was identified; however, the sites with the highest concentrations of MPs were the Bahía Blanca Estuary (Argentina), Guanabara Bay (Brazil), and Todos os Santos Bay (Brazil), regardless of the method applied. Regarding legislation, Uruguay and Argentina have the most advanced policies in the region against marine plastic pollution due to their emphasis on the life cycle and the national ban on certain single-use plastics. Therefore, considering its content, this expert review can be useful to assist researchers dealing with plastic pollution along the South American Atlantic Ocean Coast.

2.
Waste Manag ; 177: 95-105, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301410

RESUMO

Waste pickers, who work with the collection of recyclable materials in search of a source of income, are subject to various risks and diseases that are very well researched. The aim of this systematic review was therefore to identify and analyze the results of epidemiological research on waste pickers over the last 20 years as well as to investigate the geographical distribution and quality of these studies. The studies were selected from the literature by creating search keys with representative keywords in different databases. This systematic review exceptionally includes research qualified according to the Strengthening the Reporting of Observational Studies in Epidemiology guidelines. In total, 61 epidemiological studies with waste pickers were found in 15 different countries, with the largest number of studies carried out in the American continent compared to the African and Asian, respectively. Regarding the quality, 91.80 % were classified as excellent and 8.20 % as good. Although the results show a significant number of epidemiological studies with waste pickers, demonstrating scientific evidence, that there is still a lack of research focusing on waste pickers in different work scenarios, from different health perspectives and in different parts of the world, and it is not possible to highlight the trends in health research for this profession.


Assuntos
Exposição Ocupacional , Reciclagem , Eliminação de Resíduos , Estudos Epidemiológicos , Humanos
3.
Sci Total Environ ; 857(Pt 3): 159627, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36280070

RESUMO

It is imperative to search for appropriate processes to convert wastes into energy, chemicals, and materials to establish a circular bio-economy toward sustainable development. Concerning waste biomass valorization, hydrothermal carbonization (HTC) is a promising route given its advantages over other thermochemical processes. From that perspective, this article reviewed the HTC of potential biomass wastes, the characterization and environmental utilization of hydrochar, and the biorefinery potential of this process. Crop and forestry residues and sewage sludge are two categories of biomass wastes (lignocellulosic and non-lignocellulosic, respectively) readily available for HTC or even co-hydrothermal carbonization (Co-HTC). The temperature, reaction time, and solid-to-liquid ratio utilized in HTC/Co-HTC of those biomass wastes were reported to range from 140 to 370 °C, 0.05 to 48 h, and 1/47 to 1/1, respectively, providing hydrochar yields of up to 94 % according to the process conditions. Hydrochar characterization by different techniques to determine its physicochemical properties is crucial to defining the best applications for this material. In the environmental field, hydrochar might be suitable for removing pollutants from aqueous systems, ameliorating soils, adsorbing atmospheric pollutants, working as an energy carrier, and performing carbon sequestration. But this material could also be employed in other areas (e.g., catalysis). Regarding the effluent from HTC/Co-HTC, this byproduct has the potential for serving as feedstock in other processes, such as anaerobic digestion and microalgae cultivation. These opportunities have aroused the industry interest in HTC since 2010, and the number of industrial-scale HTC plants and patent document applications has increased. The hydrochar patents are concentrated in China (77.6 %), the United States (10.6 %), the Republic of Korea (3.5 %), and Germany (3.5 %). Therefore, considering the possibilities of converting their product (hydrochar) and byproduct (effluent) into energy, chemicals, and materials, HTC or Co-HTC could work as the first step of a biorefinery. And this approach would completely agree with circular bioeconomy principles.


Assuntos
Poluentes Ambientais , Microalgas , Biomassa , Carbono/química , Esgotos , Temperatura
4.
Sci Total Environ ; 822: 153614, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35124030

RESUMO

Biochar and hydrochar are carbonaceous materials with valuable applications. They can be synthesized from a wide range of organic wastes, including digestate. Digestate is the byproduct of anaerobic digestion (AD), which is performed for bioenergy (biogas) production from organic residues. Through a thermochemical process, such as pyrolysis, gasification, and hydrothermal carbonization - HTC, digestate can be converted into biochar or hydrochar. The addition of either biochar or hydrochar in AD has been reported to improve biochemical reactions and microbial growth, increasing the buffer capacity, and facilitating direct interspecies electrons transfer (DIET), resulting in higher methane (CH4) yields. Both biochar and hydrochar can adsorb undesired compounds present in biogas, such as carbon dioxide (CO2), hydrogen sulfide (H2S), ammonia (NH3), and even siloxanes. However, an integrated understanding of biochar and hydrochar produced from digestate through their return to the AD process, as additives or as adsorbents for biogas purification, is yet to be attained to close the material flow loop in a circular economy model. Therefore, this overview aimed at addressing the integration of biochar and hydrochar production from digestate, their utilization as additives and effects on AD, and their potential to adsorb biogas contaminants. This integration is supported by life cycle assessment (LCA) studies, showing positive results when combining AD and the aforementioned thermochemical processes, although more LCA is still necessary. Techno-economic assessment (TEA) studies of the processes considered are also presented, and despite an expanding market of biochar and hydrochar, further TEA is required to verify the profitability of the proposed integration, given the specificities of each process design. Overall, the synthesis of biochar and hydrochar from digestate can contribute to improving the AD process, establishing a cyclic process that is in agreement with the circular economy concept.


Assuntos
Biocombustíveis , Carvão Vegetal , Anaerobiose , Carvão Vegetal/química , Metano
5.
Chemosphere ; 285: 131362, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34242987

RESUMO

Several environmental problems in Brazil are caused by the accelerated urban and industrial growth and by the multiplicity of urban waste generated. Waste disposal in landfills is still common practice in Brazil. This work was conducted in sand filters and activated carbon column, proposing an alternative for the physical-chemical treatment of leachate as a pre-treatment to preserve the biological process. The results showed reductions of up to 74% for COD, 47% for BOD5, 93% for color, 90% for ammonia and an increase from 0.3 to 0.9 in the BOD5/COD ratio. Although the results obtained do not fall within the limits of the legislation, the results for ammonia concentration was reduced by 33.25% and 85.37% after filtration and activated carbon column treatment respectively. The use of activated carbon columns resulted in an excellent performance in the reduction of heavy metals in the leachate. The performance demonstrated a removal of 60-96%. Limitations were found in the length of the filtration races, as a limiting factor in the process. The results show the potential of using direct upward filtration with sand and activated carbon filters for the treatment of landfill leachate.


Assuntos
Metais Pesados , Eliminação de Resíduos , Poluentes Químicos da Água , Filtração , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise
6.
Environ Sci Pollut Res Int ; 27(36): 45108-45120, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32780202

RESUMO

The leachate is a type of effluent from landfills containing high concentrations of ammonia, even after normal treatment procedures are applied. Due to its characteristic, the leachate can adversely impact the environment and public health. Leachate treatment seeks to remove a series of compounds with adverse characteristics present in this type of effluent. Ammonia nitrogen is the main problem, easily observed in concentrations near 2000 mg/L. The effluents with high concentrations of ammonia nitrogen can stimulate the growth of algae, reduce the dissolved oxygen in rivers, and cause toxicity on the aquatic biota, even in low concentrations. Many research for treatment methods aiming to remove this compound, specifically, have been increasingly deeper, mainly by physical-chemical processes. This study aimed to test the process of air stripping in a closed system and pilot scale, applied on leachate treatment of landfills, to remove the high concentrations of ammonia nitrogen and its recovery by the chemical absorption of ammonia on phosphoric acid, resulting in a product with potential application as agricultural fertilizer, the ammonia phosphate. The leachate flows used were 9, 18, 20, and 40 L/h, and the air flows were 1800 and 3600 L/h. Calcium carbonate (standard grade), commercial hydrated lime (CHL), and sodium hydroxide (standard grade) were used for pH adjustments. To the ammonia recovery, three flasks were used with 2.5 L of a phosphoric acid solution of 0.12 and 0.24 mol/L. The air stripping tower removed an average of 98% of ammoniacal nitrogen, with an operating time of 4 to 9 days. The volume of air consumed to remove 1 g of ammoniacal nitrogen varied from 9, 91, and 21.6 m3. The ammonia recovery was about 92% using a phosphoric acid solution, producing the ammonia phosphate.


Assuntos
Amônia , Poluentes Químicos da Água , Amônia/análise , Nitrogênio , Oxigênio , Poluentes Químicos da Água/análise
7.
Environ Toxicol Chem ; 38(10): 2101-2110, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31233230

RESUMO

There are few studies on nanoplastic that propose quantification of the amount ingested combined with evaluation of the toxic effects on aquatic organisms. We propose 2 methods to quantify the amount of polystyrene nanoplastic (PSNP) ingested by Daphnia magna: fluorescence intensity, where a fluorescent monomer (F) is added to the PSNP and quantified through fluorescence light microscopy, and total aluminum quantification, where PSNP is synthesized with Al2 O3 metal-core nanoparticles and used for quantification of the nanoplastic ingested by the organism Daphnia magna using inductively coupled plasma-mass spectrometry. In addition, the PSNP was functionalized with palmitic acid to simulate the environmental conditions leading to biological and chemical transformations. Acute and chronic toxicity tests were performed with fluorescent PSNP (PSNP/F) and palmitic acid-functionalized PSNP/F (PSNP/F-PA). The ingestion quantified was higher by factors of 2.8 and 3.0 for PSNP/F-PA and 1.9 and 1.7 for PSNP/F applying the fluorescence intensity and total Al quantifying methods, respectively, when compared to PSNP. These results are consistent with the data obtained in the toxicity tests, which showed an approximately 3 times increase in the adverse effect of PSNP/F-PA on the mobility and reproduction of the organisms. Thus, the strong inhibition of D. magna reproduction caused by PSNP/F-PA in the chronic toxicity tests could be associated with a greater amount of this nanoplastic being ingested by the organisms. Environ Toxicol Chem 2019;38:2101-2110. © 2019 SETAC.


Assuntos
Daphnia/química , Metais/química , Nanopartículas/toxicidade , Poluentes Químicos da Água/análise , Óxido de Alumínio/química , Animais , Daphnia/efeitos dos fármacos , Daphnia/crescimento & desenvolvimento , Espectrometria de Massas , Nanopartículas/química , Imagem Óptica , Poliestirenos/química , Reprodução/efeitos dos fármacos , Testes de Toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
8.
Environ Technol ; 40(6): 793-806, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29166831

RESUMO

This study investigates the effects of pH, H2O2 concentration and reaction time of the UV/H2O2 photochemical process on the removal of organic matter and ammonia from biologically pre-treated landfill leachates in anaerobic stabilization ponds. The results show that the concentration of H2O2 and the initial pH are significant factors, with no significant interaction between them. A pH of 3 is the optimum value for the UV/H2O2 process for the removal of organic matter, resulting in 51.63% chemical oxygen demand (COD) removal in addition to the removal of aromatic compounds. The N-NH3 removal showed little variation between pH values of 1, 5, 7, 11 and 13; the removal was on the order of 16.43 ± 2.00%. The consumption of H2O2 was elevated at pH 9, 11 and 13; at these pH values, the average removal was 94.56 ± 0.43%, compared to 43.07% at pH 3. First-order polynomial models and reaction times on the order of 15 min are sufficient for optimization studies and for evaluation of the effects of the studied parameters. The results of this study support the optimization of the UV/H2O2 process for the removal of organic matter and ammonia from landfill leachates.


Assuntos
Poluentes Químicos da Água , Análise da Demanda Biológica de Oxigênio , Peróxido de Hidrogênio , Nitrogênio , Compostos Orgânicos , Oxirredução
9.
Cien Saude Colet ; 18(11): 3115-24, 2013 Nov.
Artigo em Português | MEDLINE | ID: mdl-24196877

RESUMO

This work is a survey of information gathered from waste pickers in the south, southeast and northeast of Brazil in order to provide input for the development of a waste collection vehicle and a support system to define waste collection routes. Thus, the research sought to establish the profile of waste pickers, diagnose their working conditions and identify the physical and operational structure of the organizations to which they are linked. To achieve these objectives it was necessary to apply questionnaires to waste pickers from organizations who performed the collection of recyclable materials using human- and animal-drawn vehicles and the waste picking organizations themselves. These results were subsequently used for the development of the proposed technologies. It can be concluded that the profession of waste picker still suffers from numerous forms of deprivation, resulting in marginalization, prejudice and exclusion of individuals who make their livings from it. It is therefore indispensable to promote activities that contribute to the full productive inclusion of waste pickers.


Assuntos
Saúde Ocupacional , Reciclagem , Gerenciamento de Resíduos , Adulto , Brasil , Feminino , Humanos , Masculino
10.
ScientificWorldJournal ; 2012: 643904, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22619632

RESUMO

Industrial wastes may produce leachates that can contaminate the aquatic ecosystem. Toxicity testing in acute and chronic levels is essential to assess environmental risks from the soluble fractions of these wastes, since only chemical analysis may not be adequate to classify the hazard of an industrial waste. In this study, ten samples of solid wastes from textile, metal-mechanic, and pulp and paper industries were analyzed by acute and chronic toxicity tests with Daphnia magna and Vibrio fischeri. A metal-mechanic waste (sample MM3) induced the highest toxicity level to Daphnia magna(CE(50,48 h) = 2.21%). A textile waste induced the highest toxicity level to Vibrio fischeri (sample TX2, CE(50,30 min) = 12.08%). All samples of pulp and paper wastes, and a textile waste (sample TX2) induced chronic effects on reproduction, length, and longevity of Daphnia magna. These results could serve as an alert about the environmental risks of an inadequate waste classification method.


Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Resíduos Industriais , Animais , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...