Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 132: 110900, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33113433

RESUMO

Hancornia speciosa is a medicinal plant with proven antihypertensive activity. The cyclitol l-(+)-bornesitol is the main constituent of its leaves and is a potent inhibitor of the angiotensin-converting enzyme. We herein investigated the pharmacokinetic properties of bornesitol administered orally to Wistar rats, as well as bornesitol permeation in Caco-2 cells. Bornesitol was isolated and purified from an ethanol extract of H. speciosa leaves. An ultra-high performance liquid chromatography coupled with electrospray ionization mass spectrometry (UPLC-ESI-MS/MS) method was developed and validated to quantify bornesitol in rat plasma based on Multiple Reaction Monitoring, using pentaerythritol as an internal standard. Pharmacokinetics was evaluated by the administration of single doses via intravenous in bolus (3 mg/kg) and gavage (3, 15 and 25 mg/kg). Bornesitol permeation was assayed in a transwell Caco-2 cells model, tested alone, or combined with rutin, or as a constituent of H. speciosa extract, using a developed and validated UPLC-ESI-MS/MS method. All assayed validation parameters (selectivity, residual effect, matrix effect, linearity, precision, accuracy and stability of analyte in plasma and solution) for the bioanalytical method met the acceptance criteria established by regulatory guidelines. Bornestiol reached peak plasma concentration within approximately 60 min after oral administration with a half-life ranging from 72.15 min to 123.69 min. The peak concentration and area under the concentration-time curve of bornesitol did not rise proportionally with the increasing doses, suggesting a non-linear pharmacokinetics in rats and the oral bioavailability ranged from 28.5%-59.3%. Bornesitol showed low permeability in Caco-2 cells, but the permeability apparently increased when it was administered either combined with rutin or as a constituent of H. speciosa extract. In conclusion, bornesitol was rapidly absorbed after a single oral administration to rats and followed a non-linear pharmacokinetics. The obtained data will be useful to guide further pre-clinical development of bornesitol-containing herbal preparations of H. speciosa as an antihypertensive agent.


Assuntos
Anti-Hipertensivos/farmacocinética , Apocynaceae , Cromatografia Líquida de Alta Pressão , Ciclitóis/farmacocinética , Extratos Vegetais/farmacocinética , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Administração Oral , Animais , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/sangue , Anti-Hipertensivos/isolamento & purificação , Apocynaceae/química , Disponibilidade Biológica , Células CACO-2 , Ciclitóis/administração & dosagem , Ciclitóis/sangue , Ciclitóis/isolamento & purificação , Humanos , Injeções Intravenosas , Absorção Intestinal , Mucosa Intestinal/metabolismo , Masculino , Modelos Biológicos , Dinâmica não Linear , Permeabilidade , Extratos Vegetais/administração & dosagem , Extratos Vegetais/sangue , Extratos Vegetais/isolamento & purificação , Ratos Wistar
2.
Artigo em Inglês | MEDLINE | ID: mdl-29866873

RESUMO

Progress toward the improvement of meglumine antimoniate (MA), commercially known as Glucantime, a highly effective but also toxic antileishmanial drug, has been hindered by the lack of knowledge and control of its chemical composition. Here, MA was manipulated chemically with the aim of achieving an orally effective drug. MA compounds were synthesized from either antimony pentachloride (MA-SbCl5) or potassium hexahydroxyantimonate [MA-KSb(OH)6] and prepared under a low polymerization state. These compounds were compared to Glucantime regarding chemical composition, permeation properties across a cellulose membrane and Caco-2 cell monolayer, and uptake by peritoneal macrophages. MA-SbCl5 and MA-KSb(OH)6 were characterized as less polymerized and more permeative 2:2 Sb-meglumine complexes than Glucantime, which consisted of a mixture of 2:3 and 3:3 Sb-meglumine complexes. The antileishmanial activities and hepatic uptake of all compounds were evaluated after oral administration in BALB/c mice infected with Leishmania infantum chagasi, as a model of visceral leishmaniasis (VL). The synthetic MA compounds given at 300 mg Sb/kg of body weight/12 h for 30 days significantly reduced spleen and liver parasite burdens, in contrast to those for Glucantime at the same dose. The greater activity of synthetic compounds could be attributed to their higher intestinal absorption and accumulation efficiency in the liver. MA-SbCl5 given orally was as efficacious as Glucantime by the parenteral route (80 mg Sb/kg/24 h intraperitoneally). These data taken together suggest that treatment with a less-polymerized form of MA by the oral route may be effective for the treatment of VL.


Assuntos
Leishmaniose Visceral/tratamento farmacológico , Antimoniato de Meglumina/uso terapêutico , Administração Oral , Animais , Células CACO-2 , Modelos Animais de Doenças , Feminino , Humanos , Antimoniato de Meglumina/administração & dosagem , Antimoniato de Meglumina/química , Camundongos , Camundongos Endogâmicos BALB C , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...