Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Protoc ; 1(5): e122, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33950584

RESUMO

Malassezia spp. are lipid-dependent yeasts that have been related to skin mycobiota and dermatological and systemic diseases. Study of lipid droplets (LDs) is relevant to elucidate the unknown role of these organelles in Malassezia and to gain a broader overview of lipid metabolism in Malassezia. Here, we standardized two protocols for the analysis of LDs in M. pachydermatis and M. globosa. The first describes co-staining for confocal laser-scanning fluorescence microscopy, and the second details extraction and purification of LDs. The double stain is achieved with three different neutral lipid fluorophores, namely Nile Red, BODIPY™ 493/503, and HCS LipidTOX™ Deep Red Neutral, in combination with Calcofluor White. For LD extraction, cell wall rupture is conducted using Trichoderma harzianum enzymes and cycles of vortexing with zirconium beads. LD purification is performed in a three-step ultracentrifugation process. These standardizations will contribute to the study of the dynamics, morphology, and composition of LDs in Malassezia. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Lipid droplet fluorescence staining Basic Protocol 2: Lipid droplet extraction and purification Support Protocol: Malassezia spp. culture conditions.


Assuntos
Malassezia , Hypocreales , Gotículas Lipídicas
2.
J Fungi (Basel) ; 6(3)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872112

RESUMO

Malassezia is a lipid-dependent genus of yeasts known for being an important part of the skin mycobiota. These yeasts have been associated with the development of skin disorders and cataloged as a causal agent of systemic infections under specific conditions, making them opportunistic pathogens. Little is known about the host-microbe interactions of Malassezia spp., and unraveling this implies the implementation of infection models. In this mini review, we present different models that have been implemented in fungal infections studies with greater attention to Malassezia spp. infections. These models range from in vitro (cell cultures and ex vivo tissue), to in vivo (murine models, rabbits, guinea pigs, insects, nematodes, and amoebas). We additionally highlight the alternative models that reduce the use of mammals as model organisms, which have been gaining importance in the study of fungal host-microbe interactions. This is due to the fact that these systems have been shown to have reliable results, which correlate with those obtained from mammalian models. Examples of alternative models are Caenorhabditis elegans, Drosophila melanogaster, Tenebrio molitor, and Galleria mellonella. These are invertebrates that have been implemented in the study of Malassezia spp. infections in order to identify differences in virulence between Malassezia species.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32760678

RESUMO

Malassezia yeasts are lipid dependent and part of the human and animal skin microbiome. However, they are also associated with a variety of dermatological conditions and even cause systemic infections. How these yeasts can live as commensals on the skin and switch to a pathogenic stage has long been a matter of debate. Lipids are important cellular molecules, and understanding the lipid metabolism and composition of Malassezia species is crucial to comprehending their biology and host-microbe interaction. Here, we investigated the lipid composition of Malassezia strains grown to the stationary phase in a complex Dixon medium broth. In this study, we perform a lipidomic analysis of a subset of species; in addition, we conducted a gene prediction analysis for the detection of lipid metabolic proteins. We identified 18 lipid classes and 428 lipidic compounds. The most commonly found lipids were triglycerides (TAG), sterol (CH), diglycerides (DG), fatty acids (FAs), phosphatidylcholine (PC), phosphatidylethanolamine (PE), ceramides, cholesteryl ester (CE), sphingomyelin (SM), acylcarnitine, and lysophospholipids. Particularly, we found a low content of CEs in Malassezia furfur, atypical M. furfur, and Malassezia pachydermatis and undetectable traces of these components in Malassezia globosa, Malassezia restricta, and Malassezia sympodialis. Remarkably, uncommon lipids in yeast, like diacylglyceryltrimethylhomoserine and FA esters of hydroxyl FAs, were found in a variable concentration in these Malassezia species. The latter are bioactive lipids recently reported to have antidiabetic and anti-inflammatory properties. The results obtained can be used to discriminate different Malassezia species and offer a new overview of the lipid composition of these yeasts. We could confirm the presence and the absence of certain lipid-biosynthesis genes in specific species. Further analyses are necessary to continue disclosing the complex lipidome of Malassezia species and the impact of the lipid metabolism in connection with the host interaction.


Assuntos
Malassezia , Animais , Humanos , Lipidômica , Lipídeos , Malassezia/genética , Saccharomyces cerevisiae
4.
Sci Rep ; 10(1): 4860, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184419

RESUMO

The opportunistic pathogen Malassezia pachydermatis causes bloodstream infections in preterm infants or individuals with immunodeficiency disorders and has been associated with a broad spectrum of diseases in animals such as seborrheic dermatitis, external otitis and fungemia. The current approaches to treat these infections are failing as a consequence of their adverse effects, changes in susceptibility and antifungal resistance. Thus, the identification of novel therapeutic targets against M. pachydermatis infections are highly relevant. Here, Gene Essentiality Analysis and Flux Variability Analysis was applied to a previously reported M. pachydermatis metabolic network to identify enzymes that, when absent, negatively affect biomass production. Three novel therapeutic targets (i.e., homoserine dehydrogenase (MpHSD), homocitrate synthase (MpHCS) and saccharopine dehydrogenase (MpSDH)) were identified that are absent in humans. Notably, L-lysine was shown to be an inhibitor of the enzymatic activity of MpHCS and MpSDH at concentrations of 1 mM and 75 mM, respectively, while L-threonine (1 mM) inhibited MpHSD. Interestingly, L- lysine was also shown to inhibit M. pachydermatis growth during in vitro assays with reference strains and canine isolates, while it had a negligible cytotoxic activity on HEKa cells. Together, our findings form the bases for the development of novel treatments against M. pachydermatis infections.


Assuntos
Dermatomicoses/microbiologia , Proteínas Fúngicas/antagonistas & inibidores , Fungemia/microbiologia , Lisina/farmacologia , Malassezia/crescimento & desenvolvimento , Treonina/farmacologia , Animais , Linhagem Celular , Dermatomicoses/tratamento farmacológico , Dermatomicoses/veterinária , Relação Dose-Resposta a Droga , Fungemia/tratamento farmacológico , Genes Essenciais , Homosserina Desidrogenase/antagonistas & inibidores , Humanos , Malassezia/efeitos dos fármacos , Oxo-Ácido-Liases/antagonistas & inibidores , Sacaropina Desidrogenases/antagonistas & inibidores
5.
Front Microbiol ; 8: 1772, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28959251

RESUMO

Malassezia species are lipophilic and lipid-dependent yeasts belonging to the human and animal microbiota. Typically, they are isolated from regions rich in sebaceous glands. They have been associated with dermatological diseases such as seborrheic dermatitis, pityriasis versicolor, atopic dermatitis, and folliculitis. The genomes of Malassezia globosa, Malassezia sympodialis, and Malassezia pachydermatis lack the genes related to fatty acid synthesis. Here, the lipid-synthesis pathways of these species, as well as of Malassezia furfur, and of an atypical M. furfur variant were reconstructed using genome data and Constraints Based Reconstruction and Analysis. To this end, the genomes of M. furfur CBS 1878 and the atypical M. furfur 4DS were sequenced and annotated. The resulting Enzyme Commission numbers and predicted reactions were similar to the other Malassezia strains despite the differences in their genome size. Proteomic profiling was utilized to validate flux distributions. Flux differences were observed in the production of steroids in M. furfur and in the metabolism of butanoate in M. pachydermatis. The predictions obtained via these metabolic reconstructions also suggested defects in the assimilation of palmitic acid in M. globosa, M. sympodialis, M. pachydermatis, and the atypical variant of M. furfur, but not in M. furfur. These predictions were validated via physiological characterization, showing the predictive power of metabolic network reconstructions to provide new clues about the metabolic versatility of Malassezia.

6.
Genome Announc ; 3(5)2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26472839

RESUMO

Malassezia pachydermatis is a basidiomycetous yeast that causes infections in humans and animals. Here, we report the genome sequence of Malassezia pachydermatis strain CBS 1879, which will facilitate the study of mechanisms underlying pathogenicity of the only non-lipid-dependent Malasezzia species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA