Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 61(12): 3147-55, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20555211

RESUMO

The influence of Erythromycin, Roxithromycin, Amoxicillin, Tetracycline and Sulfamethoxazole on municipal sludge in batch reactors was investigated. The study was focused on extracellular polymeric substances (EPS) as indicator of bacteria sensitivity to toxic agents. The EPS were analysed by UV-Vis and FT-IR spectroscopies and by size exclusion chromatography. It was found that Erythromycin and Roxithromycin induced a significant increase of bound EPS in flocs. This was attributed to a protection mechanism of the bacteria. Erythromycin was the only antibiotic which inhibited COD and nitrogen removal.


Assuntos
Antibacterianos/análise , Reatores Biológicos , Esgotos/análise , Amoxicilina/análise , Cromatografia em Gel , Eritromicina/análise , Nitrogênio/isolamento & purificação , Polímeros , Roxitromicina/análise , Espectrofotometria , Espectrofotometria Infravermelho , Sulfametoxazol/análise , Tetraciclina/análise
2.
J Air Waste Manag Assoc ; 51(9): 1351-8, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11575889

RESUMO

This paper explores the possibility of removing hydrocarbons (HCs) and trace elements from synthetic and industrial effluents using treated bark as biosorbent. Coniferous bark was treated either chemically (Tc) or biologically (Tb) to eliminate soluble organic compounds of bark. The removal efficiency (RE) of the HCs from a synthetic oil-water mixture containing spent diesel motor oil exceeds 95% using 2 g/L of treated bark mixed with a synthetic oil-water mixture containing 2 g/L of spent oil. Under these conditions, the retention capacity (RC) was approximately 1 g HC/g dry substrate. The sorption reaction seems to be quasi-instantaneous, and the retention capacity of spent oil on treated bark increases as the temperature augments. This implies that the retention mechanism is related to the capillary action. Results of Fourier transform infrared (FTIR) spectroscopy indicate that spent oil is mainly composed of alkanes. They also suggest that no chemical bonds between Tc and spent oil were established. Measurement of the surface tension of spent oil and the wetting index of the bark suggests that only spent oil will be retained by the substrate. Treatment of an industrial effluent containing 14.4 g/L of total HCs was performed using Tc. It was possible to remove 97% of HCs and retain some trace elements such as Al, Ca, Fe, Mg, S, and so on.


Assuntos
Hidrocarbonetos/metabolismo , Oxigênio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Poluição Ambiental/prevenção & controle , Hidrocarbonetos/análise , Controle de Qualidade , Árvores , Poluentes da Água
3.
J Adhes Dent ; 3(3): 247-55, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11803712

RESUMO

PURPOSE: This study was undertaken to evaluate several polymerization and filling procedures (incremental, bulk, light-tip, soft-cured, plasma devices) in Class II restorations through (1) a sealing evaluation of restorations filled with Tetric Ceram (TC) and Bisfil 2B (B2B, self-cured composite used as a control), (2) a FTIR analysis measuring the variations of the degree of conversion in terms of area unit ratio of the relevant resin composites and (3) a microhardness test to corroborate the FTIR analysis. MATERIALS AND METHODS: The length of the tracer penetration was measured from the gingival margin up to the cavity wall with an episcope on sectioned teeth. A ceramic mould, simulating a Class II, was filled according to the different groups and the samples were analyzed with a Bruker IFS 55 spectrometer on ultrathin sections (3 mu). The results were analyzed in terms of area unit ratio and total exposed energy. Under the same conditions, a microhardness test was run with a Frank Weihem machine. RESULTS: The results of the sealing evaluation for light-tip, incremental and self-cured techniques did not differ. The plasma procedure failed in this evaluation as the bottom increment was not polymerized. The smallest area unit ratio (the best degree of conversion) was observed in 2 groups: one, the combination of the light-tip and soft process, and two, the self-cured resin composite (B2B). The distance at which the plasma procedure failed to cure the resin composite was between 3.5 and 4.5 mm. The microhardness test confirmed the FTIR analysis except for the group G2 (TC + light-tip). As also shown by FTIR analysis, no difference between the two relevant levels was observed with the hardness test. CONCLUSION: The dentin marginal sealing efficiency of Tetric Ceram restorations was increased with the light-tip technique, but was not better than the self-cured resin composite (B2B). For Tetric Ceram, the combination of the light-tip and soft process leads to a higher degree of conversion than the other groups. There is no linear relationship between the degree of conversion, the microhardness and the total exposed energy. The combination of the soft polymerization and the light-tip device might be an alternative restorative technique to the current incremental technique.


Assuntos
Resinas Compostas/química , Adaptação Marginal Dentária , Restauração Dentária Permanente/métodos , Tecnologia Odontológica/métodos , Acrilatos , Colagem Dentária , Adesivos Dentinários , Testes de Dureza , Humanos , Luz , Maleatos , Polímeros/química , Distribuição Aleatória , Espectroscopia de Infravermelho com Transformada de Fourier , Estatísticas não Paramétricas
4.
Biotechnol Bioeng ; 46(1): 13-21, 1995 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-18623257

RESUMO

The combination of an improved bacterial desorption method, scanning electron microscopy (SEM), diffuse reflectance and transmission infrared Fourier transform spectroscopy, and a desorption-leaching device like high-pressure liquid chromatography (HPLC) was used to analyze bacterial populations (adhering and free bacteria) and surface-oxidized phases (ferric arsenates and elemental sulfur) during the arsenopyrite biooxidation by Thiobacillus ferrooxidans. The bacterial distribution, the physicochemical composition of the leachate, the evolution of corrosion patterns, and the nature and amount of the surface-oxidized chemical species characterized different behavior for each step of arsenopyrite bioleaching. The first step is characterized by a slow but strong adhesion of bacteria to mineral surfaces, the appearance of a surface phase of elemental sulfur, the weak solubilization of Fe(II), As(III), and As(V), and the presence of the first corrosion patterns, which follow the fragility zones and the crystallographic orientation of mineral grains. After this short step, growth of the unattached bacteria begins, while ferrous ions in solution are oxidized by them. Ferric ions produced by the bacteria can oxidize the sulfide directly and are regenerated by Fe(II) bacterial oxidation. At this time, a bioleaching cycle takes place and a coarse surface phase of ferric arsenate (FeAsO(4) . xH(2)O where x approximately 2) and deep ovoid pores appear. At the end of the bioleaching cycle, the high concentration of Fe(III) and As(V) in solution promotes the precipitation of a second phase of amorphous ferric arsenate (FeAsO(4) . xH(2)O where x approximately 4) in the leachate. Then the biooxidation process ceases: The bacteria adhering to the mineral sufaces are coated by the ferric arsenates and the concentration of Fe(III) on the leachate is found to have decreased greatly. Both oxidation mechanisms (direct and indirect oxidation) have been stopped. (c) 1995 John Wiley & Sons, Inc.

5.
Biotechnol Bioeng ; 39(11): 1121-7, 1992 May.
Artigo em Inglês | MEDLINE | ID: mdl-18600913

RESUMO

During the bacterial oxidation of a pure pyrite by Thiobacillus ferrooxidans, a great number of corrosion tunnels appear that are easily revealed by scanning electron microscopy observations. This involves an increase in the surface area without significant granulometric reduction of mineral grains. Thus, the evaluation of intragranular porosity, determined by elution front analysis, allows one to estimate accurately the fraction of oxidized sulphide, because of the development of deep holes (propagating pore mechanism). After 60 days of bioleaching, the intragranular porosity represents about 34% of the initial sulphide volume, which corresponds to 25 km of tunnels (2 microm i.d.) per gram of pyrite. On other hand, the granulometric reduction ( approximately 7%) is responsible for a 23% decrease of the initial sulphide volume. The elution front analysis appears as a nondestructive method for measuring the intragranular porosity of the bioleached pyrite.

6.
Appl Environ Microbiol ; 58(4): 1175-82, 1992 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16348688

RESUMO

The oxidation of a pure pyrite by Thiobacillus ferrooxidans is not really a constant phenomenon; it must be considered to be more like a succession of different steps which need characterization. Electrochemical studies using a combination of a platinum electrode and a specific pyrite electrode (packed-ground-pyrite electrode) revealed four steps in the bioleaching process. Each step can be identified by the electrochemical behavior (redox potentials) of pyrite, which in turn can be related to chemical (leachate content), bacterial (growth), and physical (corrosion patterns) parameters of the leaching process. A comparison of the oxidation rates of iron and sulfur indicated the nonstoichiometric bacterial oxidation of a pure pyrite in which superficial phenomena, aqueous oxidation, and deep crystal dissolution are successively involved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA