Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Sci (Lond) ; 130(22): 2005-2015, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27503950

RESUMO

Aerobic exercise-induced cardiac hypertrophy (CH) is a physiological response involving accurate orchestration of gene and protein expression of contractile and metabolic components. The microRNAs: miR-208a, miR-208b and miR-499 are each encoded by a myosin gene and thus are also known as 'MyomiRs', regulating several mRNA targets that in turn regulate CH and metabolic pathways. To understand the role of myomiRs in the fine-tuning of cardiac myosin heavy chain (MHC) isoform expression by exercise training-induced physiological hypertrophy, Wistar rats were subjected to two different swim training protocols. We observed that high-volume swim training (T2), improved cardiac diastolic function, induced CH and decreased the expression of miR-208a and miR-208b Consequently, the increased expression of their targets, sex determining region y-related transcription factor 6 (Sox6), Med13, Purß, specificity proteins (Sp)/Krüppel-like transcription factor 3 (SP3) and HP1ß (heterochromatin protein 1ß) was more prominent in T2, thus converging to modulate cardiac metabolic and contractile adaptation by exercise training, with an improvement in the α-MHC/ß-MHC ratio, bypassing the increase in PPARß and histone deacetylase (HDAC) class I and II regulation. Altogether, we conclude that high-volume swim training finely assures physiological cardiac remodelling by epigenetic regulation of myomiRs, because inhibition of miR-208a and miR-208b increases the expression of their target proteins and stimulates the interaction among metabolic, contractile and epigenetic genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...