Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 125(38): 8434-8453, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34533308

RESUMO

Reliable modeling of hydrocarbon oxidation relies critically on knowledge of the branching fractions (BFs) as a function of temperature (T) and pressure (p) for the products of the reaction of the hydrocarbon with atomic oxygen in its ground state, O(3P). During the past decade, we have performed in-depth investigations of the reactions of O(3P) with a variety of small unsaturated hydrocarbons using the crossed molecular beam (CMB) technique with universal mass spectrometric (MS) detection and time-of-flight (TOF) analysis, combined with synergistic theoretical calculations of the relevant potential energy surfaces (PESs) and statistical computations of product BFs, including intersystem crossing (ISC). This has allowed us to determine the primary products, their BFs, and extent of ISC to ultimately provide theoretical channel-specific rate constants as a function of T and p. In this work, we have extended this approach to the oxidation of one of the most important species involved in the combustion of aromatics: the benzene (C6H6) molecule. Despite extensive experimental and theoretical studies on the kinetics and dynamics of the O(3P) + C6H6 reaction, the relative importance of the C6H5O (phenoxy) + H open-shell products and of the spin-forbidden C5H6 (cyclopentadiene) + CO and phenol adduct closed-shell products are still open issues, which have hampered the development of reliable benzene combustion models. With the CMB technique, we have investigated the reaction dynamics of O(3P) + benzene at a collision energy (Ec) of 8.2 kcal/mol, focusing on the occurrence of the phenoxy + H and spin-forbidden C5H6 + CO and phenol channels in order to shed further light on the dynamics of this complex and important reaction, including the role of ISC. Concurrently, we have also investigated the reaction dynamics of O(1D) + benzene at the same Ec. Synergistic high-level electronic structure calculations of the underlying triplet/singlet PESs, including nonadiabatic couplings, have been performed to complement and assist the interpretation of the experimental results. Statistical (RRKM)/master equation (ME) computations of the product distribution and BFs on these PESs, with inclusion of ISC, have been performed and compared to experiment. In light of the reasonable agreement between the CMB experiment, literature kinetic experimental results, and theoretical predictions for the O(3P) + benzene reaction, the so-validated computational methodology has been used to predict (i) the BF between the C6H5O + H and C5H6 + CO channels as a function of collision energy and temperature (at 0.1 and 1 bar), showing that their increase progressively favors radical (phenoxy + H)-forming over molecule (C5H6 + CO and phenol stabilization)-forming channels, and (ii) channel-specific rate constants as a function of T and p, which are expected to be useful for improved combustion models.

2.
J Phys Chem Lett ; 11(22): 9621-9628, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33125250

RESUMO

The extent of intersystem crossing in the O(3P) + C6H6 reaction, a prototypical system for spin-forbidden reactions in oxygenated aromatic molecules, is theoretically evaluated for the first time. Calculations are performed using nonadiabatic transition-state theory coupled with stochastic master equation simulations and Landau-Zener theory. It is found that the dominant intersystem crossing pathways connect the T2 and S0 potential energy surfaces through at least two distinct minimum-energy crossing points. The calculated channel-specific rate constants and intersystem crossing branching fractions differ from previous literature estimates and provide valuable kinetic data for the investigation of benzene and polycyclic aromatic hydrocarbons oxidation in interstellar, atmospheric, and combustion conditions. The theoretical results are supported by crossed molecular beam experiments with electron ionization mass-spectrometric detection and time-of-flight analysis at 8.2 kcal/mol collision energy. This system is a suitable benchmark for theoretical and experimental studies of intersystem crossing in aromatic species.

3.
Sci Rep ; 7(1): 3803, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630493

RESUMO

The predictive accuracy of state-of-the-art continuum models for charge transport in organic semiconductors is highly dependent on the accurate tuning of a set of parameters whose values cannot be effectively estimated either by direct measurements or by first principles. Fitting the complete set of model parameters at once to experimental data requires to set up extremely complex multi-objective optimization problems whose solution is, on the one hand, overwhelmingly computationally expensive and, on the other, it provides no guarantee of the physical soundness of the value obtained for each individual parameter. In the present study we present a step-by-step procedure that enables to determine the most relevant model parameters, namely the density of states width, the carrier mobility and the injection barrier height, by fitting experimental data from a sequence of relatively simple and inexpensive measurements to suitably devised numerical simulations. At each step of the proposed procedure only one parameter value is sought for, thus highly simplifying the numerical fitting and enhancing its robustness, reliability and accuracy. As a case study we consider a prototypical n-type organic polymer. A very satisfactory fitting of experimental measurements is obtained, and physically meaningful values for the aforementioned parameters are extracted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...