Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 7(23): 12751-9, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-25980639

RESUMO

Functionalization of electrospun mats with antimicrobial nanomaterials is an attractive strategy to develop polymer coating materials to prevent bacterial colonization on surfaces. In this study we demonstrated a feasible approach to produce antimicrobial electrospun mats through a postfabrication binding of graphene-based nanocomposites to the nanofibers' surface. A mixture of poly(lactide-co-glycolide) (PLGA) and chitosan was electrospun to yield cylindrical and narrow-diameter (356 nm) polymeric fibers. To achieve a robust antimicrobial property, the PLGA-chitosan mats were functionalized with graphene oxide decorated with silver nanoparticles (GO-Ag) via a chemical reaction between the carboxyl groups of graphene and the primary amine functional groups on the PLGA-chitosan fibers using 3-(dimethylamino)propyl-N'-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide as cross-linking agents. The attachment of GO-Ag sheets to the surface of PLGA-chitosan fibers was successfully revealed by scanning and transmission electron images. Upon direct contact with bacterial cells, the PLGA-chitosan mats functionalized with GO-Ag nanocomposites were able to effectively inactivate both Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. Our results suggest that covalent binding of GO-Ag nanocomposites to the surface of PLGA-chitosan mats opens up new opportunities for the production of cost-effective, scalable, and biodegradable coating materials with the ability to hinder microbial proliferation on solid surfaces.


Assuntos
Anti-Infecciosos/química , Grafite/química , Nanocompostos/química , Nanofibras/química , Prata/química , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Técnicas Eletroquímicas , Grafite/farmacologia , Prata/farmacologia , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...