Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 27037, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27246902

RESUMO

Light localization due to random imperfections in periodic media is paramount in photonics research. The group index is known to be a key parameter for localization near photonic band edges, since small group velocities reinforce light interaction with imperfections. Here, we show that the size of the smallest localized mode that is formed at the band edge of a one-dimensional periodic medium is driven instead by the effective photon mass, i.e. the flatness of the dispersion curve. Our theoretical prediction is supported by numerical simulations, which reveal that photonic-crystal waveguides can exhibit surprisingly small localized modes, much smaller than those observed in Bragg stacks thanks to their larger effective photon mass. This possibility is demonstrated experimentally with a photonic-crystal waveguide fabricated without any intentional disorder, for which near-field measurements allow us to distinctly observe a wavelength-scale localized mode despite the smallness (~1/1000 of a wavelength) of the fabrication imperfections.

2.
Opt Express ; 21(8): 10295-300, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23609739

RESUMO

By analogy to the three dimensional optical bottle beam, we introduce the plasmonic bottle beam: a two dimensional surface wave which features a lattice of plasmonic bottles, i.e. alternating regions of bright focii surrounded by low intensities. The two-dimensional bottle beam is created by the interference of a non-diffracting beam, a cosine-Gaussian beam, and a plane wave, thus giving rise to a non-diffracting complex intensity distribution. By controlling the propagation constant of the cosine-Gauss beam, the size and number of plasmonic bottles can be engineered. The two dimensional lattice of hot spots formed by this new plasmonic wave could have applications in plasmonic trapping.


Assuntos
Pinças Ópticas , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
3.
Opt Lett ; 38(4): 459-61, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23455102

RESUMO

The use of a birefringent graded photonic crystal (GPhC) is proposed for the realization of an efficient polarization beam splitter. This approach allows decoupling the two functions of efficient light injection for both polarizations and TE/TM beam splitting. A smooth light polarization splitting is naturally achieved due to the different curved trajectories followed within the graded medium by the TE and TM waves. A 160 nm operating bandwidth with insertion loss around 1 dB and interpolarization crosstalk below -15 dB is predicted by a finite difference time domain simulation. The unusually exploited electromagnetic phenomena are experimentally evidenced by scanning near-field optical measurements performed on samples fabricated using the silicon on insulator photonics technology. These experimental works open perspectives for the use of birefringent GPhCs to manage polarization diversity in silicon photonic circuits.

4.
Phys Rev Lett ; 109(9): 093904, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-23002838

RESUMO

A new surface wave is introduced, the cosine-Gauss beam, which does not diffract while it propagates in a straight line and tightly bound to the metallic surface for distances up to 80 µm. The generation of this highly localized wave is shown to be straightforward and highly controllable, with varying degrees of transverse confinement and directionality, by fabricating a plasmon launcher consisting of intersecting metallic gratings. Cosine-Gauss beams have potential for applications in plasmonics, notably for efficient coupling to nanophotonic devices, opening up new design possibilities for next-generation optical interconnects.

5.
Opt Lett ; 36(7): 1074-6, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21478987

RESUMO

The optical near-field technique is applied to provide a direct experimental observation of the refracted beam propagation inside a photonic crystal structure displaying a superprism effect. The obtained results show a 35° light beam angle deviation for a wavelength variation from 1500 to 1600 nm. The experimentally determined beam divergence is in good agreement with modeling predictions and previously performed transmittance experiments. A marked self-collimation propagation over a broad 20 nm wide spectral range centered at λ=1550 nm is experimentally demonstrated. The developed technique opens promising perspectives for the invisibility cloaking structures investigation.

6.
Phys Rev Lett ; 101(7): 073901, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18764535

RESUMO

We report here the direct observation by using a scanning near-field microscopy technique of the light focusing through a photonic crystal flat lens designed and fabricated to operate at optical frequencies. The lens is fabricated using a III-V semiconductor slab, and we directly visualize the propagation of the electromagnetic waves by using a scanning near-field optical microscope. We directly evidence spatially, as well as spectrally, the focusing operating regime of the lens. At last, in light of the experimental scanning near-field optical microscope pictures, we discuss the lens ability to focus light at a subwavelength scale.

7.
Opt Express ; 16(1): 279-86, 2008 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-18521159

RESUMO

We demonstrate here that switching and tuning of a nanocavity resonance can be achieved by approaching a sub-micrometer tip inside its evanescent near-field. The resonance energy is tuned over a wide spectral range (Deltalambda/lambda~10(-3)) without significant deterioration of the cavity peak-transmittance and of the resonance linewidth. Such a result is achieved by taking benefits from a weak tip-cavity interaction regime in which the tip behaves as a pure optical path length modulator.


Assuntos
Nanotecnologia/instrumentação , Óptica e Fotônica/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento
8.
Opt Lett ; 31(14): 2160-2, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16794712

RESUMO

We present a direct, room-temperature near-field optical study of light confinement by a subwavelength defect microcavity in a photonic crystal slab containing quantum-well sources. The observations are compared with three-dimensional finite-difference time-domain calculations, and excellent agreement is found. Moreover, we use a subwavelength cavity to study the influence of a near-field probe on the imaging of localized optical modes.

9.
Opt Lett ; 30(7): 780-2, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15832936

RESUMO

The strong electromagnetic coupling between surface plasmon polariton modes on opposite interfaces of a finite thickness periodically nanostructured metal film has been studied. Surface polariton dispersion and associated electromagnetic field distributions have been analyzed. It was shown that at a frequency that corresponds to the crossing of film Bloch modes of different symmetries, the radiative losses of surface polaritons that are related to the polaritons' coupling to light during propagation on the structured surface are suppressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...