Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 55(1): 789-797, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38146049

RESUMO

Endophytic bacteria play a crucial role in plant development and adaptation, and the knowledge of how endophytic bacteria assemblage is influenced by cultivation site and plant genotype is an important step to achieve microbiome manipulation. This work aimed to study the roots and stems of endophytic bacteriome of four maize genotypes cultivated in two regions of the semi-arid region of Pernambuco - Brazil. Our hypothesis is that the endophytic community assemblage will be influenced by plant genotypes and cultivation region. Metabarcoding sequencing data revealed significant differences in alfa diversity in function of both factors, genotypes, and maize organs. Beta diversity analysis showed that the bacterial communities differ mainly in function of the plant organ. The most abundant genera found in the samples were Leifsonia, Bacillus, Klebsiella, Streptomyces, and Bradyrhizobium. To understand ecological interactions within each compartment, we constructed co-occurrence network for each organ. This analysis revealed important differences in network structure and complexity and suggested that Leifsonia (the main genera found) had distinct ecological roles depending on the plant organ. Our data showed that root endophytic maize bacteria would be influenced by cultivation site, but not by genotype. We believe that, collectively, our data not only characterize the bacteriome associated with this plant and how different factors shape it, but also increase the knowledge to select potential bacteria for bioinoculant production.


Assuntos
Actinomycetales , Zea mays , Zea mays/microbiologia , Brasil , Endófitos/genética , Bactérias/genética , Genótipo , Raízes de Plantas/microbiologia
2.
Environ Monit Assess ; 195(9): 1131, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653163

RESUMO

Green manure decomposition and nutrient recycling improve soil quality and productivity of different crops, but information on irrigated fruit orchards in the Brazilian semi-arid region is still scarce. Decomposition and nitrogen, phosphate, and potassium release from the cut biomass of three green manure legumes (sunn hemp, pigeon pea and jack bean) placed in litterbags, and spontaneous vegetation grown for 90 days in the rows of a passion fruit orchard were followed for 150 days. Biomasses decreased exponentially, reaching 12 (sunn hemp) to 25% (jack beans and spontaneous vegetation) after 150 days. K was rapidly released (< 21 and 4% of the original content remaining after 7 and 150 days, respectively), contrasting with more than half of the P and one third of the N remaining after 150 days. The amounts released were more influenced by the amounts of biomass produced (sunn hemp, 1583); (Jack bean 5152 kg ha-1); (Pigeon pea 822 kg ha-1); (Spontaneous plants 3175 kg ha-1); (spontaneous legumes 744 kg ha-1) than by variation in decomposition proportions among species. N release represented a liquid input to the soil, since more than 80% of the green manure and spontaneous vegetation contents came from N2-symbiotic fixation. Therefore, green manure is an effective technique to incorporate N and recycle K and P in irrigated orchards in the Brazilian semi-arid region.


Assuntos
Fabaceae , Passiflora , Biomassa , Brasil , Frutas , Esterco , Monitoramento Ambiental , Nutrientes , Solo , Verduras
3.
Braz J Microbiol ; 53(3): 1623-1632, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35809208

RESUMO

Peanut (Arachis hypogaea L.) is an important crop for the family-based systems in the tropics, mainly in Brazil. In the Brazilian drylands, peanuts are cropped in low technological systems, and cheap and efficient technologies are needed to improve crop yield and sustainability. Despite this importance, few data are available on selecting efficient peanut rhizobia in experiments under different edaphoclimatic conditions. This work evaluated the agronomic efficiency and the biological nitrogen fixation (BNF) by two elite Bradyrhizobium strains under four different fields in the Brazilian semiarid region. We compared a new efficient strain Bradyrhizobium sp. ESA 123 with the reference strain B. elkanii SEMIA 6144, currently used in peanut rhizobial inoculants in Brazil. Besides the inoculated treatments, two uninoculated controls were assessed (with and without 80 kg ha-1 of N-urea). The BNF was estimated by the δ15N approach in three out of four field assays. BNF contribution was improved by inoculation of both Bradyrhizobium strains, ranging from 42 to 51% in Petrolina and 43 to 60% in Nossa Senhora da Glória. Peanuts' yields benefited from the inoculation of both strains and N fertilization in all four assays. Nevertheless, the results showed the efficiency of both strains under different edaphoclimatic conditions, indicating the native strain ESA 123 as a potential bacterium for recommendation as inoculants for peanuts in Brazil, mainly in drylands.


Assuntos
Bradyrhizobium , Fabaceae , Arachis/microbiologia , Bradyrhizobium/genética , Brasil , Fixação de Nitrogênio , Simbiose
4.
Syst Appl Microbiol ; 44(3): 126208, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33992956

RESUMO

Mimosa tenuiflora (Willd.) Poir. is widespread in southern and central American drylands, but little information is available concerning its associated rhizobia. Therefore, this study aimed to characterize M. tenuiflora rhizobia from soils of the tropical dry forests (Caatinga) in Pernambuco State, Brazil, at the molecular and symbiotic levels. Soil samples of pristine Caatinga areas in four municipalities were used to grow M. tenuiflora. First, the bacteria from root nodules were subjected to nodC/nifH gene amplification, and the bacteria positive for both genes had the 16S rRNA gene sequenced. Then, ten strains were evaluated using recA, gyrB, and nodC gene sequences, and seven of them had their symbiotic efficiency assessed. Thirty-two strains were obtained and 22 of them were nodC/nifH positive. Twenty strains clustered within Paraburkholderia and two within Rhizobium by 16S rRNA gene sequencing. The beta-rhizobia were similar to P. phenoliruptrix (12) and P. diazotrophica (8). Both alpha-rhizobia were closely related to R. miluonense. The recA + gyrB phylogenetic analysis clustered four and five strains within the P. phenoliruptrix and P. diazotrophica branches, respectively, but they were somewhat divergent to the 16S rRNA phylogeny. For Rhizobium sp. ESA 637, the recA + gyrB phylogeny clustered the strain with R. jaguaris. The nodC phylogeny indicated that ESA 626, ESA 629, and ESA 630 probably represented a new symbiovar branch. The inoculation assay showed high symbiotic efficiency for all tested strains. The results indicated high genetic diversity and efficiency of M. tenuiflora rhizobia in Brazilian drylands and included P. phenoliruptrix-like bacteria in the list of efficient beta-rhizobia in the Caatinga biome.


Assuntos
Burkholderiaceae/classificação , Florestas , Mimosa , Filogenia , Microbiologia do Solo , Brasil , Burkholderiaceae/isolamento & purificação , DNA Bacteriano/genética , Mimosa/microbiologia , RNA Ribossômico 16S/genética , Solo , Simbiose
5.
3 Biotech ; 11(1): 4, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33269188

RESUMO

The co-inoculation of Bradyrhizobium with other non-bradyrhizobial strains was already assessed on cowpea, but the co-inoculation of two Bradyrhizobium strains was not tested up to now. This study aimed to evaluate the cowpea growth, N accumulation, and Bradyrhizobium competitiveness of the elite strain B. pachyrhizi BR 3262 when co-inoculated with other efficient Bradyrhizobium from the Brazilian semiarid region. Three potted-plant experiments were carried out. In the first assay, 35 efficient Bradyrhizobium isolates obtained from the semiarid region of Brazil were co-inoculated with the elite strains B. pachyrhizi BR 3262. The experiment was conducted in gnotobiotic conditions. The plant growth, nodulation, N nutritional variables, and nodular occupation were assessed. Under gnotobiotic and non-sterile soil conditions, ten selected bacteria plus the elite strain B. yuanmingense BR 3267 were used at the second and third experiments, respectively. The cowpea was inoculated with the 11 bacteria individually or co-inoculated with BR 3262. The plant growth and N nutritional variables were assessed. A double-layer medium spot method experiment was conducted to evaluate the interaction among the co-inoculated strains in standard and diluted YMA media. The co-inoculation treatments showed the best efficiency when compared to the treatments inoculated solely with BR 3262. This strain occupied a low amount of cowpea nodules ranging from 5 to 67.5%. The treatments with lower BR 3262 nodule occupancy showed the best results for the shoot nitrogen accumulation. The culture experiment showed that four bacteria inhibited the growth of BR 3262. In contrast, seven strains from the soils of Brazilian semiarid region were benefited by the previous inoculation of this strain. In the second and third experiments, the results indicated that all 11 co-inoculated treatments were more efficient than the single inoculation, proofing the best performance of the dual inoculation of Bradyrhizobium on cowpea.

6.
Arch Microbiol ; 202(5): 1015-1024, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31932864

RESUMO

Microbial inoculants are suitable cost-effective technology to help plants endure drought. For the development of commercial inoculants, screening of efficient plant growth-promoting bacteria (PGPB) is a crucial step. The aim of this study was to evaluate the performance of PGPB to modulate drought resistance in Sorghum bicolor. A pot experiment with sorghum was conducted to access the role of previously selected PGPB strains. In addition, two non-inoculated control treatments (with and without urea fertilization) were also evaluated. For comparison, a fully irrigated treatment (FIT) was also assessed. All plants were fully irrigated for 47 days when the water supply was completely suspended for the drought-stressed treatments. When the soil moisture was close to zero, the irrigation was resumed. During dehydration and rehydration process, the leaf gas exchange (LGE) was evaluated. The parameters of plant growth and nitrogen nutrition were assessed 8 days after reirrigation. Comparing to the FIT, all treatments reduced the LGE rates, but in the presence of Bacillus sp. ESA 402 photosynthesis rate was less reduced. Some inoculation treatments promoted better recovery of photosynthesis, comparable to the FIT, 6 days after rehydration. The plant growth and nitrogen nutrition were negatively affected by the drought, but the inoculation of different bacteria reduced some negative effects. The nitrogen accumulation in the shoots was increased by all strains, suggesting their diazotrophic ability even under drought. Overall, the inoculation of Bacillus sp. ESA 402 was the best bacterium with potential for future field trials.


Assuntos
Bacillus/metabolismo , Secas , Desenvolvimento Vegetal/fisiologia , Sorghum/microbiologia , Sorghum/fisiologia , Inoculantes Agrícolas , Nitrogênio , Fotossíntese , Folhas de Planta , Raízes de Plantas/microbiologia , Solo , Microbiologia do Solo
7.
Isotopes Environ Health Stud ; 46(2): 210-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20582789

RESUMO

Foliar delta(15)N values are useful to calculate N(2) fixation and N losses from ecosystems. However, a definite pattern among vegetation types is not recognised and few data are available for semi-arid areas. We sampled four sites in the Brazilian caatinga, along a water availability gradient. Sites with lower annual rainfall (700 mm) but more uniform distribution (six months) had delta(15)N values of 9.4 and 10.1 per thousand, among the highest already reported, and significantly greater than those (6.5 and 6.3 per thousand) of sites with higher rainfall (800 mm) but less uniform distribution (three months). There were no significant differences at each site among species or between non-fixing legume and non-legume species, in spite of the higher N content of the first group. Therefore, they constitute ideal reference plants in estimations of legume N(2) fixation. The higher values could result from higher losses of (15)N depleted gases or lower losses of enriched (15)N material.


Assuntos
Ecossistema , Isótopos de Nitrogênio/metabolismo , Nitrogênio/metabolismo , Árvores , Abastecimento de Água/análise , Madeira/metabolismo , Brasil , Geografia , Chuva , Especificidade da Espécie , Madeira/classificação , Madeira/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...