Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 53(4): 2133-2144, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35947344

RESUMO

Salmonella is an important foodborne pathogen, and it is unable to produce the quorum sensing signaling molecules called acyl-homoserine lactones (AHLs). However, it synthesizes the SdiA protein, detecting AHL molecules, also known as autoinducer-1 (AI-1), in the external environment. Exogenous AHLs can regulate specific genes related to virulence and stress response in Salmonella. Thus, interfering with quorum sensing can be a strategy to reduce virulence and help elucidate the cell-to-cell communication role in the pathogens' response to extracellular signals. This study aimed to evaluate the influence of the quorum sensing inhibitors furanone and phytol on phenotypes regulated by N-dodecanoyl homoserine lactone (C12-HSL) in Salmonella enterica serovar Enteritidis. The furanone C30 at 50 nM and phytol at 2 mM canceled the alterations promoted by C12-HSL on glucose consumption and the levels of free cellular thiol in Salmonella Enteritidis PT4 578 under anaerobic conditions. In silico analysis suggests that these compounds can bind to the SdiA protein of Salmonella Enteritidis and accommodate in the AHL binding pocket. Thus, furanone C30 and phytol act as antagonists of AI-1 and are likely inhibitors of the quorum sensing mechanism mediated by AHL in Salmonella.


Assuntos
Acil-Butirolactonas , Fitol , Acil-Butirolactonas/química , Acil-Butirolactonas/metabolismo , Transativadores/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Percepção de Quorum , Salmonella enteritidis/genética , Fenótipo
2.
Braz J Microbiol ; 53(2): 819-829, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35048318

RESUMO

The most studied mechanism of quorum sensing in Gram-negative bacteria is mediated by autoinducer 1 (AI-1), namely, acyl-homoserine lactone (AHL). This system allows communication among different bacterial species and regulates the expression of virulence genes in many pathogens. Although AHL-producing bacteria have been detected in the intestines of humans and other animals, no report was found about AHL-producing bacteria in the insect gut and the possible effects of these autoinducers on enteropathogenic bacteria. Therefore, this study aimed to identify AHL-producing bacteria in the gut of larvae of Galleria mellonella and to evaluate the influence of this quorum sensing signal on the regulation of adhesion and motility phenotypes in the intestinal pathogen Salmonella. Sequencing of the 16S rRNA gene, 16S rRNA gene-based phylogenetic analyses, and phenotypic characterization of gut isolates was performed. The profile of AHLs produced by the isolates was determined using thin-layer chromatography (TLC) and revealed with the biosensor strain Chromobacterium violaceum CV026. Sequencing, phylogenetic analyses and phenotypic characterization of gut isolates showed that the three AHL-producing strains belong to the species Rahnella inusitata, named GM34, GM56, and GM60. The TLC showed that R. inusitata produces a six-carbon AHL. In the presence of cell-free extract of R. inusitata containing AHL and under anaerobic conditions, Salmonella enterica increased the adhesion to stainless steel coupons and presented swarming motility. Extracts from the culture medium of R. inusitata isolates containing AHL increased the adhesion on stainless steel coupons and swarming motility of Salmonella enterica serovar Enteritidis PT4 under anaerobic conditions. The results suggest the possibility of communication between members of the G. mellonella intestinal microbiota with pathogens such as Salmonella.


Assuntos
Acil-Butirolactonas , Aço Inoxidável , Acil-Butirolactonas/química , Acil-Butirolactonas/metabolismo , Bactérias/genética , Fenótipo , Filogenia , Percepção de Quorum , RNA Ribossômico 16S/genética , Rahnella , Salmonella enteritidis/genética
3.
Arch Microbiol ; 203(9): 5491-5507, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34417652

RESUMO

Chromobacterium violaceum is a Gram-negative, saprophytic bacterium that can infect humans and its virulence may be regulated by quorum sensing via N-acyl homoserine lactones. A virtual screening study with plant compounds and nonsteroidal anti-inflammatory drugs for inhibition of C. violaceum quorum sensing system has been performed. In vitro evaluation was done to validate the in silico results. Molecular docking showed that phytol, margaric acid, palmitic acid, dipyrone, ketoprofen, and phenylbutazone bound to structures of CviR proteins of different C. violaceum strains. Phytol presented higher binding affinities than AHLs and furanones, recognized inducers, and inhibitors of quorum sensing, respectively. When tested in vitro, phytol at a non-inhibitory concentration was the most efficient tested compound to reduce phenotypes regulated by quorum sensing. The results indicate that in silico compound prospection to inhibit quorum sensing may be a good tool for finding alternative lead molecules.


Assuntos
Anti-Inflamatórios , Chromobacterium , Extratos Vegetais , Percepção de Quorum , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Chromobacterium/efeitos dos fármacos , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...