Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 31(12): 3330-6, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15651616

RESUMO

The main aim of this paper is to make a study of dose-rate distributions obtained around the 15 mm, radiation oncology physics and engineering services, Australia (ROPES) eye plaque loaded with 125I model 6711 radioactive seeds. In this study, we have carried out a comparison of the dose-rate distributions obtained by the algorithm used by the Plaque Simulator (PS) (BEBIG GmbH, Berlin, Germany) treatment planning system with those obtained by means of the Monte Carlo method for the ROPES eye plaque. A simple method to obtain the dose-rate distributions in a treatment planning system via the superposition of the dose-rate distributions of a seed placed in the eye plaque has been developed. The method uses eye plaque located in a simplified geometry of the head anatomy and distributions obtained by means of the Monte Carlo code GEANT4. The favorable results obtained in the development of this method suggest that it could be implemented on a treatment planning system to improve dose-rate calculations. We have also found that the dose-rate falls sharply along the eye and that outside the eye the dose-rate is very low. Furthermore, the lack of backscatter photons from the air located outside the eye-head phantom produces a dose reduction negligible for distances from the eye-plaque r<1 cm but reaches up to 20% near the air-eye interface. Results showed that the treatment planning system lacks accuracy around the border of the eye (in the sclera and the surrounding area) due to the simplicity of the algorithm used. The BEBIG treatment planning system uses a global attenuation factor that takes into account the effect of the eye plaque seed carrier and the lack of backscatter photons caused by the metallic cover, which in the case of a ROPES eye plaque has a default value of T= 1 (no correction). In the present study, a global attenuation factor T=0.96 and an air-interface correction factor which improve on treatment planning system calculations were obtained.


Assuntos
Braquiterapia/instrumentação , Braquiterapia/métodos , Neoplasias Oculares/radioterapia , Radioisótopos do Iodo/análise , Radioisótopos do Iodo/uso terapêutico , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Melanoma/radioterapia , Modelos Biológicos , Método de Monte Carlo , Especificidade de Órgãos , Compostos Radiofarmacêuticos/análise , Compostos Radiofarmacêuticos/uso terapêutico , Dosagem Radioterapêutica , Eficiência Biológica Relativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...