Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 34(28): 8333-8346, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29924618

RESUMO

Edelfosine is an anticancer drug with an asymmetric structure because, being a derivative of glycerol, it possesses two hydrophobic substituents of very different lengths. We showed that edelfosine destabilizes liquid-ordered membranes formed by either 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine, sphingomyelin (SM), and cholesterol (1:1:1 molar ratio) or SM and cholesterol (2:1 molar ratio). This was observed by differential scanning calorimetry in which phase transition arises from either of these membrane systems after the addition of edelfosine. The alteration in the liquid-ordered domains was characterized by using a small-angle X-ray diffraction that revealed the formation of gel phases as a consequence of the addition of edelfosine at low temperatures and by a wide-angle X-ray diffraction that confirmed changes in the membranes, indicating the formation of these gel phases. The increase in phase transition derived by the edelfosine addition was further confirmed by Fourier-transform infrared spectroscopy. The effect of edelfosine was compared with that of structurally analogue lipids: platelet-activating factor and 1-palmitoyl-2-acetyl- sn-glycero-3-phosphocholine, which also have the capacity of destabilizing liquid-ordered domains, although they are less potent than edelfosine for this activity, and lysophosphatidylcholine, which lacks this capacity. It was concluded that edelfosine may be associated with cholesterol favorably competing with sphingomyelin, and that this sets sphingomyelin free to undergo a phase transition. Finally, the experimental observations can be described by molecular dynamics calculations in terms of intermolecular interaction energies in phospholipid-cholesterol membranes. Higher interaction energies between asymmetric phospholipids and cholesterol than between sphingomyelin and cholesterol were obtained. These results are interesting because they biophysically characterize one of the main molecular mechanisms to trigger apoptosis of the cancer cells.


Assuntos
Membrana Celular/efeitos dos fármacos , Colesterol/química , Éteres Fosfolipídicos/química , Éteres Fosfolipídicos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Membrana Celular/química , Bicamadas Lipídicas/química
2.
Langmuir ; 34(10): 3336-3348, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29447442

RESUMO

α-Tocopherol is considered to carry on a very important role as an antioxidant for membranes and lipoproteins and other biological roles as membrane stabilizers and bioactive lipids. Given its essential role, it is very important to fully understand its location in the membrane. In this work, the vertical location of vitamin E in saturated membranes has been studied using biophysical techniques. Small- and wide-angle X-ray diffraction experiments show that α-tocopherol alters the water layer between bilayers in both 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) and 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC), indicating its proximity to this surface. The quenching of the intrinsic fluorescence of α-tocopherol indicates a low quenching efficiency by acrylamide and a higher quenching by 5-doxyl-PC than by 9- and 16-doxyl-PC. These results suggest that in both DMPC and DPPC membranes, the chromanol ring is not far away from the surface of the membrane but within the bilayer. 1H nuclear Overhauser enhancement spectroscopy magic-angle spinning-nuclear magnetic resonance studies showed that α-tocopherol is localized in a similar manner in DMPC and DPPC membranes, with the chromanol ring embedded in the upper part of the hydrophobic bilayer. Using attenuated total reflection-Fourier transform infrared spectroscopy, it was observed that the tail chain of α-tocopherol lies nearly parallel to the acyl chains of DMPC and DPPC. Taking these results together, it was concluded that in both DMPC and DPPC, the hydroxyl group of the chromanol ring will establish hydrogen bonding with water on the membrane surface, and the main axis of the α-tocopherol molecule will be perpendicular to the bilayer plane.


Assuntos
Dimiristoilfosfatidilcolina/química , Lipídeos/química , Fenóis/química , Fosfatidilcolinas/química , Água/química , alfa-Tocoferol/química , Bicamadas Lipídicas/química
3.
Phys Chem Chem Phys ; 19(9): 6731-6742, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28211935

RESUMO

α-Tocopherol is a natural preservative that prevents free radical chain oxidations in biomembranes. We have studied the location of α-tocopherol in model membranes formed by different unsaturated phosphatidylcholines, namely 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (PLPC), 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) and 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PDPC). Small angle X-ray diffraction revealed that α-tocopherol was well mixed with all the phospholipids. In all the cases only one lamellar phase was detected. Very modest changes occasioned by α-tocopherol were observed in the electron density profiles. The results obtained from quenching of α-tocopherol intrinsic fluorescence by acrylamide showed that this vitamin was inefficiently quenched in the four types of membranes, indicating that the fluorescent chromanol ring was poorly accessible for this hydrophilic quencher. Compatible with that, quenching by doxyl derivatives of phosphatidylcholines indicated that the chromanol ring was close in the four membranes to the nitroxide probe located at position 5. Quenching by doxyl-phosphatidylcholines also indicated that the efficiency of quenching was higher in POPC than in the other unsaturated phospholipids. 1H-MAS-NMR showed that α-tocopherol induced chemical shifts of protons from the phospholipids, especially of those bonded to carbons 2 and 3 of the acyl chains of the four phospholipids studied. The 1H-MAS-NMR NOESY results suggested that the lower part of the chromanol ring was located between the C3 of the fatty acyl chains and the centre of the hydrophobic monolayer for the four phospholipid membranes studied. Taken together, these results suggest that α-tocopherol is located, in all the membranes studied, with the chromanol ring within the hydrophobic palisade but not far away from the lipid-water interface.


Assuntos
Fosfatidilcolinas/química , alfa-Tocoferol/química , Gorduras Insaturadas , Membranas Artificiais , Fosfolipídeos/química , Difração de Raios X
4.
Biochim Biophys Acta ; 1858(6): 1071-81, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26926421

RESUMO

Idebenone is a synthetic analog of coenzyme Q; both share a quinone moiety but idebenone has a shorter lipophilic tail ending with a hydroxyl group. Differential scanning calorimetry experiments showed that both idebenone and idebenol widened and shifted the phase transition of 1,2-dipalmitoylphosphatidylcholine (DPPC) to a lower temperature and a phase separation with different concentrations of these molecules was observed. Also small angle X-ray diffraction and wide angle X-ray diffraction revealed that both, idebenone and idebenol, induced laterally separated phases in fluid membranes when included in DPPC membranes. Electronic profiles showed that both forms, idebenone and idebenol, reduced the thickness of the fluid membrane. (2)H NMR measurements showed that the order of the membrane decreased at all temperatures in the presence of idebenone or idebenol, the greatest disorder being observed in the segments of the acyl chains close to the lipid-water interface. (1)H NOESY MAS NMR spectra were obtained using 1-palmitoyl-2-oleoyl-phosphatidylcholine membranes and results pointed to a similar location in the membrane for both forms, with the benzoquinone or benzoquinol rings and their terminal hydroxyl group of the hydrophobic chain located near the lipid/water interface of the phospholipid bilayer and the terminal hydroxyl group of the hydrophobic chain of both compounds located at the lipid/water interface. Taken together, all these different locations might explain the different physiological behavior shown by the idebenone/idebenol compared with the ubiquinone-10/ubiquinol-10 pair in which both compounds are differently localized in the membrane.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Fluidez de Membrana , Membranas Artificiais , Quinonas/química , Ubiquinona/análogos & derivados , Água/química , Varredura Diferencial de Calorimetria , Solubilidade , Ubiquinona/química , Difração de Raios X
5.
ACS Chem Neurosci ; 6(10): 1741-50, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26247812

RESUMO

Capsaicin is the chemical responsible for making some peppers spicy hot, but additionally it is used as a pharmaceutical to alleviate different pain conditions. Capsaicin binds to the vanilloid receptor TRPV1, which plays a role in coordinating chemical and physical painful stimuli. A number of reports have also shown that capsaicin inserts in membranes and its capacity to modify them may be part of its molecular mode of action, affecting the activity of other membrane proteins. We have used differential scanning calorimetry, X-ray diffraction, (31)P NMR, and (2)H NMR spectroscopy to show that capsaicin increases the fluidity and disorder of 1,2-palmitoyl-sn-glycero-3-phosphocholine membrane models. By using (1)H NOESY MAS NMR based on proton-proton cross-peaks between capsaicin and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine resonances, we determined the location profile of this molecule in a fluid membrane concluding that it occupies the upper part of the phospholipid monolayer, between the lipid-water interface and the double bond of the acyl chain in position sn-2. This location explains the disorganization of the membrane of both the lipid-water interface and the hydrophobic palisade.


Assuntos
Capsaicina/química , Capsaicina/metabolismo , Bicamadas Lipídicas/metabolismo , Água/química , Varredura Diferencial de Calorimetria , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Modelos Químicos , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Isótopos de Fósforo , Trítio , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...