Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IBRO Rep ; 9: 115-131, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32775758

RESUMO

Coordination between the urinary bladder (BL) and external urethral sphincter (EUS) is necessary for storage and elimination of urine. In rats interneuronal circuits at two levels of the spinal cord (i.e., L6-S1 and L3-L4) play an important role in this coordination. In the present experiments retrograde trans-synaptic transport of pseudorabies virus (PRV) encoding fluorescent markers (GFP and RFP) was used to trace these circuits. To examine the relative localization of EUS-related and BL-related interneuronal populations we injected PRV-GFP into the EUS and PRV-RFP into the BL wall. The PRV infected populations of spinal interneurons were localized primarily in the dorsal commissure (DCM) of L6/S1 and in a hypothesized lumbar spinal coordinating center (LSCC) in L3/L4 above and lateral to central canal (CC). At both sites colocalization of markers occurred in a substantial number of labeled interneurons indicating concomitant involvement of these double-labelled neurons in the EUS- and BL-circuits and suggesting their role in EUS-BL coordination. Intense GFP or RFP fluorescent was detected in a subpopulation of cells at both sites suggesting that they were infected earlier and therefore likely to represent first order, primary interneurons that directly synapse with output neurons. Larger numbers of weakly fluorescent neurons that likely represent second order interneurons were also identified. Within the population of EUS-related first order interneurons only 3-8 % exhibited positive immunoreaction for an early transcription factor Pax2 specific to GABAergic and glycinergic inhibitory neurons suggesting that the majority of interneurons in DCM and LSCC projecting directly to the EUS motoneurons are excitatory.

2.
Acta Physiol (Oxf) ; 222(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28719042

RESUMO

AIM: The mechanisms underlying detection and transmission of sensory signals arising from visceral organs, such as the urethra, are poorly understood. Recently, specialized ACh-expressing cells embedded in the urethral epithelium have been proposed as chemosensory sentinels for detection of bacterial infection. Here, we examined the morphology and potential role in sensory signalling of a different class of specialized cells that express serotonin (5-HT), termed paraneurones. METHODS: Urethrae, dorsal root ganglia neurones and spinal cords were isolated from adult female mice and used for immunohistochemistry and calcium imaging. Visceromotor reflexes (VMRs) were recorded in vivo. RESULTS: We identified two morphologically distinct groups of 5-HT+ cells with distinct regional locations: bipolar-like cells predominant in the mid-urethra and multipolar-like cells predominant in the proximal and distal urethra. Sensory nerve fibres positive for calcitonin gene-related peptide, substance P, and TRPV1 were found in close proximity to 5-HT+ paraneurones. In vitro 5-HT (1 µm) stimulation of urethral primary afferent neurones, mimicking 5-HT release from paraneurones, elicited changes in the intracellular calcium concentration ([Ca2+ ]i ) mediated by 5-HT2 and 5-HT3 receptors. Approximately 50% of 5-HT responding cells also responded to capsaicin with changes in the [Ca2+ ]i . In vivo intra-urethral 5-HT application increased VMRs induced by urethral distention and activated pERK in lumbosacral spinal cord neurones. CONCLUSION: These morphological and functional findings provide insights into a putative paraneurone-neural network within the urethra that utilizes 5-HT signalling, presumably from paraneurones, to modulate primary sensory pathways carrying nociceptive and non-nociceptive (mechano-sensitive) information to the central nervous system.


Assuntos
Vias Aferentes/citologia , Células Quimiorreceptoras/citologia , Células Quimiorreceptoras/metabolismo , Células Epiteliais/citologia , Uretra/citologia , Animais , Feminino , Camundongos , Serotonina/metabolismo , Uretra/inervação
3.
Am J Physiol Renal Physiol ; 312(4): F607-F618, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052872

RESUMO

While urothelial signals, including sonic hedgehog (Shh), drive bladder mesenchyme differentiation, it is unclear which pathways within the mesenchyme are critical for its development. Studies have shown that fibroblast growth factor receptor 2 (Fgfr2) is necessary for kidney and ureter mesenchymal development. Our objective was to determine the role of Fgfr2 in bladder mesenchyme. We used Tbx18cre mice to delete Fgfr2 in bladder mesenchyme (Fgfr2BM-/-). We performed three-dimensional reconstructions, quantitative real-time PCR, in situ hybridization, immunolabeling, ELISAs, immunoblotting, void stain on paper, ex vivo bladder sheet assays, and in vivo decerebrated cystometry. Compared with controls, embryonic (E) day 16.5 (E16.5) Fgfr2BM-/- bladders have thin muscle layers with reduced α-smooth muscle actin levels and thickened lamina propria with increased collagen expression that intrudes into muscle. From postnatal (P) day 1 (P1) to P30, Fgfr2BM-/- bladders demonstrate progressive muscle loss and increased collagen expression. Postnatal Fgfr2BM-/- bladder sheets exhibit decreased contractility and increased passive stretch tension compared with controls. In vivo cystometry revealed high baseline and threshold pressures and shortened intercontractile intervals in Fgfr2BM-/- bladders compared with controls. Mechanistically, while Shh expression appears normal, mRNA and protein readouts of hedgehog activity are increased in E16.5 Fgfr2BM-/- bladders compared with controls. Moreover, E16.5Fgfr2BM-/- bladders exhibit higher levels of Cdo and Boc, hedgehog coreceptors that enhance sensitivity to Shh, than controls. Fgfr2 is critical for bladder mesenchyme patterning by virtue of its role in modulation of hedgehog signaling.


Assuntos
Padronização Corporal , Mesoderma/metabolismo , Músculo Liso/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Bexiga Urinária/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Apoptose , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Proliferação de Células , Colágeno/genética , Colágeno/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Idade Gestacional , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Masculino , Camundongos Knockout , Contração Muscular , Músculo Liso/embriologia , Músculo Liso/fisiopatologia , Miócitos de Músculo Liso , Fenótipo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/efeitos dos fármacos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Bexiga Urinária/embriologia , Bexiga Urinária/fisiopatologia , Urodinâmica
4.
Am J Physiol Renal Physiol ; 308(8): F888-98, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25656370

RESUMO

While urothelial signals, including sonic hedgehog (Shh), drive bladder mesenchyme differentiation, it is unclear which pathways within the mesenchyme are critical for its development. Studies have shown that fibroblast growth factor receptor (Fgfr)2 is necessary for kidney and ureter mesenchymal development. The objective of the present study was to determine the role of Fgfr2 in the bladder mesenchyme. We used Tbx18cre mice to delete Fgfr2 in the bladder mesenchyme (Fgfr2(BM-/-)). We performed three-dimensional reconstructions, quantitative real-time PCR, in situ hybridization, immunolabeling, ELISAs, immunoblot analysis, void stain on paper, ex vivo bladder sheet assays, and in vivo decerebrated cystometry. Compared with control bladders, embryonic day 16.5 (E16.5) Fgfr2(BM-/-) bladders had thin muscle layers with less α-smooth muscle actin and thickened lamina propria with increased collagen type Ia and IIIa that intruded into the muscle. The reciprocal changes in mutant layer thicknesses appeared partly due to a cell fate switch. From postnatal days 1 to 30, Fgfr2(BM-/-) bladders demonstrated progressive muscle loss and increased collagen expression. Postnatal Fgfr2(BM-/-) bladder sheets exhibited decreased agonist-mediated contractility and increased passive stretch tension versus control bladder sheets. Cystometry revealed high baseline and threshold pressures and shortened intercontractile intervals in Fgfr2(BM-/-) versus control bladders. Mechanistically, whereas Shh expression appeared normal, mRNA and protein readouts of hedgehog activity were increased in E16.5 Fgfr2(BM-/-) versus control bladders. Moreover, E16.5 Fgfr2(BM-/-) bladders exhibited higher levels of Cdo and Boc, hedgehog coreceptors that enhance sensitivity to Shh, compared with control bladders. In conclusion, loss of Fgfr2 in the bladder mesenchyme leads to abnormal bladder morphology and decreased compliance and contractility.


Assuntos
Padronização Corporal , Mesoderma/metabolismo , Músculo Liso/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Bexiga Urinária/metabolismo , Animais , Apoptose , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Complacência (Medida de Distensibilidade) , Fibrose , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Idade Gestacional , Proteínas Hedgehog/metabolismo , Imunoglobulina G/metabolismo , Masculino , Mesoderma/anormalidades , Camundongos Knockout , Contração Muscular , Músculo Liso/anormalidades , Músculo Liso/fisiopatologia , Tamanho do Órgão , Fenótipo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Bexiga Urinária/anormalidades , Bexiga Urinária/fisiopatologia , Urodinâmica
5.
Acta Physiol (Oxf) ; 207(1): 66-84, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23033877

RESUMO

The functions of the lower urinary tract to store and periodically eliminate urine are regulated by a complex neural control system in the brain and spinal cord that coordinates the activity of the bladder and urethral outlet. Experimental studies in animals indicate that urine storage is modulated by reflex mechanisms in the spinal cord, whereas voiding is mediated by a spinobulbospinal pathway passing through a coordination centre in the rostral brain stem. Many of the neural circuits controlling micturition exhibit switch-like patterns of activity that turn on and off in an all-or-none manner. This study summarizes the anatomy and physiology of the spinal and supraspinal micturition switching circuitry and describes a computer model of these circuits that mimics the switching functions of the bladder and urethra at the onset of micturition.


Assuntos
Sistema Nervoso Autônomo/anatomia & histologia , Sistema Nervoso Autônomo/fisiologia , Reflexo/fisiologia , Bexiga Urinária/inervação , Bexiga Urinária/fisiologia , Micção/fisiologia , Animais , Humanos , Uretra/inervação , Uretra/fisiologia
6.
Exp Neurol ; 232(1): 90-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21867704

RESUMO

Nitro-oleic acid (9- and 10-nitro-octadeca-9-enoic acid, OA-NO(2)) is an electrophilic fatty acid nitroalkene derivative that modulates gene transcription and protein function via post-translational protein modification. Nitro-fatty acids are generated from unsaturated fatty acids by oxidative inflammatory reactions and acidic conditions in the presence of nitric oxide or nitrite. Nitroalkenes react with nucleophiles such as cysteine and histidine in a variety of susceptible proteins including transient receptor potential (TRP) channels in sensory neurons of the dorsal root and nodose ganglia. The present study revealed that OA-NO(2) activates TRP channels on afferent nerve terminals in the urinary bladder and thereby increases bladder activity. The TRPV1 agonist capsaicin (CAPS, 1 µM) and the TRPA1 agonist allyl isothiocyanate (AITC, 30 µM), elicited excitatory effects in bladder strips, increasing basal tone and amplitude of phasic bladder contractions (PBC). OA-NO(2) mimicked these effects in a concentration-dependent manner (1 µM-33 µM). The TRPA1 antagonist HC3-030031 (HC3, 30 µM) and the TRPV1 antagonist diaryl piperazine analog (DPA, 1 µM), reduced the effect of OA-NO(2) on phasic contraction amplitude and baseline tone. However, the non-selective TRP channel blocker, ruthenium red (30 µM) was a more effective inhibitor, reducing the effects of OA-NO(2) on basal tone by 75% and the effects on phasic amplitude by 85%. In bladder strips from CAPS-treated rats, the effect of OA-NO(2) on phasic contraction amplitude was reduced by 65% and the effect on basal tone was reduced by 60%. Pretreatment of bladder strips with a combination of neurokinin receptor antagonists (NK1 selective antagonist, CP 96345; NK2 selective antagonist, MEN 10,376; NK3 selective antagonist, SB 234,375, 1 µM each) reduced the effect of OA-NO(2) on basal tone, but not phasic contraction amplitude. These results indicate that nitroalkene fatty acid derivatives can activate TRP channels on CAPS-sensitive afferent nerve terminals, leading to increased bladder contractile activity. Nitrated fatty acids produced endogenously by the combination of fatty acids and oxides of nitrogen released from the urothelium and/or afferent nerves may play a role in modulating bladder activity.


Assuntos
Ácido Oleico/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Bexiga Urinária/fisiologia , Animais , Capsaicina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Técnicas In Vitro , Ratos , Ratos Sprague-Dawley , Fármacos do Sistema Sensorial/farmacologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/inervação
7.
J Pharmacol Exp Ther ; 333(3): 883-95, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20304940

RESUMO

Nitro-oleic acid (OA-NO(2)), an electrophilic fatty acid by-product of nitric oxide and nitrite reactions, is present in normal and inflamed mammalian tissues at up to micromolar concentrations and exhibits anti-inflammatory signaling actions. The effects of OA-NO(2) on cultured dorsal root ganglion (DRG) neurons were examined using fura-2 Ca(2+) imaging and patch clamping. OA-NO(2) (3.5-35 microM) elicited Ca(2+) transients in 20 to 40% of DRG neurons, the majority (60-80%) of which also responded to allyl isothiocyanate (AITC; 1-50 microM), a TRPA1 agonist, and to capsaicin (CAPS; 0.5 microM), a TRPV1 agonist. The OA-NO(2)-evoked Ca(2+) transients were reduced by the TRPA1 antagonist 2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-isopropylphenyl) acetamide (HC-030031; 5-50 microM) and the TRPV1 antagonist capsazepine (10 microM). Patch-clamp recording revealed that OA-NO(2) depolarized and induced inward currents in 62% of neurons. The effects of OA-NO(2) were elicited by concentrations >or=5 nM and were blocked by 10 mM dithiothreitol. Concentrations of OA-NO(2) >or=5 nM reduced action potential (AP) overshoot, increased AP duration, inhibited firing induced by depolarizing current pulses, and inhibited Na(+) currents. The effects of OA-NO(2) were not prevented or reversed by the NO-scavenger carboxy-2-phenyl-4,4,5,5-tetramethylimidazolineoxyl-1-oxyl-3-oxide. A large percentage (46-57%) of OA-NO(2)-responsive neurons also responded to CAPS (0.5 microM) or AITC (0.5 microM). OA-NO(2) currents were reduced by TRPV1 (diarylpiperazine; 5 microM) or TRPA1 (HC-030031; 5 microM) antagonists. These data reveal that endogenous OA-NO(2) generated at sites of inflammation may initially activate transient receptor potential channels on nociceptive afferent nerves, contributing to the initiation of afferent nerve activity, and later suppresses afferent firing.


Assuntos
Anti-Inflamatórios/farmacologia , Canais de Cálcio/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Neurônios Aferentes/efeitos dos fármacos , Ácidos Oleicos/farmacologia , Canais de Cátion TRPV/agonistas , Potenciais de Ação/efeitos dos fármacos , Animais , Anquirinas , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Separação Celular , Eletrofisiologia , Gânglios Espinais/citologia , Processamento de Imagem Assistida por Computador , Masculino , Potenciais da Membrana/efeitos dos fármacos , Óxido Nítrico/fisiologia , Nociceptores/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Agonistas de Canais de Sódio , Canais de Sódio/efeitos dos fármacos , Canal de Cátion TRPA1 , Canais de Cátion TRPC , Canais de Cátion TRPV/metabolismo
8.
Gene Ther ; 16(5): 660-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19225548

RESUMO

We examined whether replication-defective herpes simplex virus (HSV) vectors encoding the 67 kDa form of the glutamic acid decarboxylase (GAD(67)) gene product, the gamma-aminobutyric acid (GABA) synthesis enzyme, can suppress detrusor overactivity (DO) in rats with spinal cord injury (SCI). One week after spinalization, HSV vectors expressing GAD and green fluorescent protein (GFP) (HSV-GAD) were injected into the bladder wall. Rats with SCI without HSV injection (HSV-untreated) and those injected with lacZ-encoding reporter gene HSV vectors (HSV-LacZ) were used as controls. Three weeks after viral injection, continuous cystometry was performed under awake conditions in all three groups. In the HSV-GAD group, the number and amplitude of non-voiding contractions (NVCs) were significantly decreased (40-45% and 38-40%, respectively) along with an increase in voiding efficiency, compared with HSV-untreated and HSV-LacZ groups, but micturition pressure was not different among the three groups. Intrathecal application of bicuculline partly reversed the decreased number and amplitude of NVCs, and decreased voiding efficiency in the HSV-GAD group. In the HSV-GAD group, GAD(67) mRNA and protein levels were significantly increased in the L6-S1 dorsal root ganglia (DRG) compared with the HSV-LacZ group, while 57% of DRG cells were GFP-positive, and these neurons showed increased GAD(67)-like immunoreactivity compared with the HSV-LacZ group. These results indicate that GAD gene therapy effectively suppresses DO after SCI predominantly through the activation of spinal GABA(A) receptors. Thus, HSV-based GAD gene transfer to bladder afferent pathways may represent a novel approach for treatment of neurogenic DO.


Assuntos
Terapia Genética/métodos , Glutamato Descarboxilase/genética , Simplexvirus/genética , Traumatismos da Medula Espinal/complicações , Bexiga Urinária Hiperativa/terapia , Animais , Estudos de Viabilidade , Feminino , Expressão Gênica/genética , Vetores Genéticos , Glutamato Descarboxilase/metabolismo , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Transgenes , Bexiga Urinária/fisiopatologia , Bexiga Urinária Hiperativa/etiologia , Bexiga Urinária Hiperativa/fisiopatologia
9.
Gene Ther ; 16(4): 558-69, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19242523

RESUMO

Interstitial cystitis (IC)/painful bladder syndrome (PBS) is a painful debilitating chronic visceral pain disorder of unknown etiology that affects an estimated 1 million people in the United States alone. It is characterized by inflammation of the bladder that results in chronic pelvic pain associated with bladder symptoms of urinary frequency and urgency. Regardless of the etiology, IC/PBS involves either increased and/or abnormal activity in afferent nociceptive sensory neurons. Pain-related symptoms in patients with IC/PBS are often very difficult to treat. Both medical and surgical therapies have had limited clinical utility in this debilitating disease and numerous drug treatments, such as heparin, dimethylsulfoxide and amitriptyline, have proven to be palliative at best, and in some IC/PBS patients provide no relief whatsoever. Although opiate narcotics have been employed to help alleviate IC/PBS pain, this strategy is fraught with problems as systemic narcotic administration causes multiple unwanted side effects including mental status change and constipation. Moreover, chronic systemic narcotic use leads to dependency and need for dose escalation due to tolerance; therefore, new therapies are desperately needed to treat refractory IC/PBS. This has led our group to develop a gene therapy strategy that could potentially alleviate chronic pelvic pain using the herpes simplex virus-directed delivery of analgesic proteins to the bladder.


Assuntos
Cistite Intersticial/terapia , Terapia Genética/métodos , Vetores Genéticos , Simplexvirus/genética , Cistite Intersticial/fisiopatologia , Técnicas de Transferência de Genes , Humanos , Neurônios Aferentes/fisiologia , Peptídeos Opioides/fisiologia , Bexiga Urinária/inervação
10.
Am J Physiol Renal Physiol ; 296(4): F892-901, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19158342

RESUMO

Transient receptor potential (TRP) and acid-sensing ion channels (ASIC) are molecular detectors of chemical, mechanical, thermal, and nociceptive stimuli in sensory neurons. They have been identified in the urothelium, a tissue considered part of bladder sensory pathways, where they might play a role in bladder function. This study investigated functional properties of TRP and ASIC channels in cultured urothelial cells from the rat using patch-clamp and fura 2 Ca(2+) imaging techniques. The TRPV4 agonist 4alpha-phorbol-12,13 didecanoate (4alpha-PDD; 1-5 microM) and the TRPA1/TRPM8 agonist icilin (50-100 microM) elicited transient currents in a high percentage of cells (>70%). 4alpha-PDD responses were suppressed by the TRPV4 antagonist HC-010961 (10 microM). The TRPV1 agonist capsaicin (1-100 microM) and the TRPA1/TRPM8 agonist menthol (5-200 microM) elicited transient currents in a moderate percentage of cells ( approximately 25%). All of these agonists increased intracellular calcium concentration ([Ca(2+)](i)). Most cells responded to more than one TRP agonist (e.g., capsaicin and 4alpha-PDD), indicating coexpression of different TRP channels. In the presence of the TRPV1 antagonist capsazepine (10 microM), changes in pH induced by HCl elicited ionic currents (pH 5.5) and increased [Ca(2+)](i) (pH 6.5) in approximately 50% of cells. Changes in pH using acetic acid (pH 5.5) elicited biphasic-like currents. Responses induced by acid were sensitive to amiloride (10 microM). In summary, urothelial cells express multiple TRP and ASIC channels, whose activation elicits ionic currents and Ca(2+) influx. These "neuron-like" properties might be involved in transmitter release, such as ATP, that can act on afferent nerves or smooth muscle to modulate their responses to different stimuli.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Canais de Sódio/metabolismo , Canais de Cátion TRPC/metabolismo , Bexiga Urinária/metabolismo , Urotélio/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Anquirinas , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Células Cultivadas , Feminino , Concentração de Íons de Hidrogênio , Masculino , Potenciais da Membrana , Moduladores de Transporte de Membrana/farmacologia , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Canais de Sódio/efeitos dos fármacos , Canal de Cátion TRPA1 , Canais de Cátion TRPC/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/metabolismo , Fatores de Tempo , Bexiga Urinária/citologia , Bexiga Urinária/efeitos dos fármacos , Urotélio/efeitos dos fármacos
11.
Am J Physiol Renal Physiol ; 294(4): F971-81, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18272602

RESUMO

Muscarinic receptors (mAChRs) have been identified in the urothelium, a tissue that may be involved in bladder sensory mechanisms. This study investigates the expression and function of mAChRs using cultured urothelial cells from the rat. RT-PCR established the expression of all five mAChR subtypes. Muscarinic agonists acetylcholine (ACh; 10 microM), muscarine (Musc; 20 microM), and oxotremorine methiodide (OxoM; 0.001-20 microM) elicited transient repeatable increases in the intracellular calcium concentration ([Ca(2+)](i)) in approximately 50% of cells. These effects were blocked by the mAChR antagonist atropine methyl nitrate (10 microM). The sources of [Ca(2+)](i) changes included influx from external milieu in 63% of cells and influx from external milieu plus release from internal stores in 27% of cells. The use of specific agonists and antagonists (10 microM M(1) agonist McN-A-343; 10 microM M(2), M(3) antagonists AF-DX 116, 4-DAMP) revealed that M(1), M(2), M(3) subtypes were involved in [Ca(2+)](i) changes. The PLC inhibitor U-73122 (10 microM) abolished OxoM-elicited Ca(2+) responses in the presence of the M(2) antagonist AF-DX 116, suggesting that M(1), M(3), or M(5) mediates [Ca(2+)](i) increases via PLC pathway. ACh (0.1 microM), Musc (10 microM), oxotremorine sesquifumarate (20 microM), and McN-A-343 (1 muM) acting on M(1), M(2), and M(3) mAChR subtypes stimulated ATP release from cultured urothelial cells. In summary, cultured urothelial cells express functional M(1), M(2), and M(3) mAChR subtypes whose activation results in ATP release, possibly through mechanisms involving [Ca(2+)](i) changes.


Assuntos
Cálcio/farmacologia , Receptores Muscarínicos/fisiologia , Bexiga Urinária/fisiologia , Urotélio/fisiologia , Animais , Técnicas de Cultura de Células/métodos , Células Cultivadas , Estrenos/farmacologia , Imuno-Histoquímica , Inibidores de Fosfodiesterase/farmacologia , Pirrolidinonas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor Muscarínico M1/genética , Receptor Muscarínico M2/genética , Receptor Muscarínico M3/genética , Receptores Muscarínicos/efeitos dos fármacos , Receptores Muscarínicos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Bexiga Urinária/citologia , Bexiga Urinária/efeitos dos fármacos , Urotélio/citologia , Urotélio/efeitos dos fármacos
12.
Neuroscience ; 132(4): 1017-26, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15857706

RESUMO

Effects of i.c.v. and i.t. administration of (3SR,4aRS,6RS,8aRS)-6-[2-(1H-tetrazol-5-yl)ethyl]decahydroisoquinoline-3-carboxylic acid (LY215490), a competitive alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist and MK-801, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist on the micturition reflex were evaluated in urethane-anesthetized rats, to determine if glutamatergic mechanisms in brain as well as spinal cord are important for the control of micturition. I.c.v. or i.t. injection of LY215490 in low doses (0.01-0.03 microg) did not change rhythmic bladder or external urethral sphincter (EUS) electromyogram (EMG) activity during continuous cystometrograms (CMGs; 0.21 ml/min), whereas higher doses (0.1-1 microg) markedly suppressed these responses. During single CMGs (0.04 ml/min), 0.1-1 microg i.c.v. or 0.1-10 microg i.t. doses increased volume threshold and pressure threshold for inducing micturition, and decreased bladder contraction amplitude and voiding efficiency. MK-801 in low doses (0.6 microg i.c.v. or 0.6-1.8 microg for i.t.) did not change bladder contraction amplitude or EUS EMG activity during continuous CMGs, whereas higher doses 6-60 microg markedly suppressed these responses. During single CMGs, MK-801 (6-60 microg i.c.v. or 60 microg i.t.) increased volume threshold and pressure threshold, and decreased voiding efficiency and bladder contraction amplitude. Pretreatment i.c.v. with MK-801 in a dose 1.8 microg which alone had little effect on bladder contraction amplitude and EUS EMG activity, markedly enhanced depressant effects of LY215490 (0.03 microg i.c.v.) on these responses. Administration of same doses of drugs by i.t. route did not elicit a similar synergistic interaction. These data indicate that in urethane-anesthetized rats glutamatergic mechanisms in brain and spinal cord are essential for controlling micturition and that interactions between AMPA and NMDA glutamatergic transmission are important at supraspinal but not spinal sites.


Assuntos
Maleato de Dizocilpina/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Isoquinolinas/administração & dosagem , N-Metilaspartato/metabolismo , Medula Espinal/efeitos dos fármacos , Tetrazóis/administração & dosagem , Micção/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Anestesia , Anestésicos Intravenosos/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Eletromiografia , Feminino , Ácido Glutâmico/metabolismo , Injeções Intraventriculares , Injeções Espinhais , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/fisiologia , Uretana/farmacologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/inervação
13.
J Urol ; 173(2): 625-9, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15643277

RESUMO

PURPOSE: Alterations in nitric oxide (NO) levels have been demonstrated in some humans with interstitial cystitis (IC) as well as in chemically induced animal models of cystitis. Thus, in the current study we investigated whether inducible NO synthase (iNOS) mediated NO production is altered in the bladder of cats with a naturally occurring model of IC termed feline IC (FIC). MATERIALS AND METHODS: We examined iNOS expression using Western immunoblotting and baseline NO production using an NO microsensor from smooth muscle and mucosal bladder strips in 9 healthy cats and 6 diagnosed with FIC. RESULTS: There was a significant increase in baseline NO production in cats with FIC compared with that in healthy cats in smooth muscle and mucosal strips. This production was not ablated in the absence of extracellular Ca (100 microM egtazic acid) or following incubation with the calmodulin antagonist trifluoroperazine (20 microM), indicating iNOS mediated Ca independent NO production. Release was significantly decreased following incubation with the NOS antagonist L-NAME (N-nitro-L-arginine methyl ester) (100 microM). Furthermore, immunoblotting revealed a trend toward increased iNOS expression in smooth muscle and mucosal strips from FIC cats but not from healthy cats. CONCLUSIONS: In light of previous findings that the barrier property of the urothelial surface is disrupted in FIC and iNOS mediated increase in NO alters barrier function in other types of epithelium our findings suggest that iNOS dependent NO production may have a role in epithelial barrier dysfunction in FIC.


Assuntos
Cistite Intersticial/metabolismo , Óxido Nítrico Sintase/biossíntese , Óxido Nítrico/biossíntese , Bexiga Urinária/metabolismo , Animais , Gatos
14.
Am J Physiol Renal Physiol ; 287(5): F1084-91, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15251862

RESUMO

Purinergic mechanisms appear to be involved in motor as well as sensory functions in the urinary bladder. ATP released from efferent nerves excites bladder smooth muscle, whereas ATP released from urothelial cells can activate afferent nerves and urothelial cells. In the present study, we used immunohistochemical techniques to examine the distribution of purinoceptors in the urothelium, smooth muscle, and nerves of the normal cat urinary bladder as well as possible changes in the expression of these receptors in cats with a chronic painful bladder condition termed feline interstitial cystitis (FIC) in which ATP release from the urothelium is increased. In normal cats, a range of P2X (P2X(1), P2X(2), P2X(3), P2X(4), P2X(5), P2X(6), and P2X(7)) and P2Y (P2Y(1), P2Y(2), and P2Y(4)) receptor subtypes was expressed throughout the bladder urothelium. In FIC cats, there is a marked reduction in P2X(1) and loss of P2Y(2) receptor staining. Both P2X(3) and P2Y(4) are present in nerves in normal cat bladder, and no obvious differences in staining were detected in FIC. Smooth muscle in the normal bladder did not exhibit P2Y receptor staining but did exhibit P2X (P2X(2), P2X(1)) staining. In the FIC bladder smooth muscle, there was a significant reduction in P2X(1) expression. These findings raise the possibility that purinergic mechanisms in the urothelium and bladder smooth muscle are altered in FIC cats. Because the urothelial cells appear to have a sensory function in the bladder, it is possible that the plasticity in urothelial purinergic receptors is linked with the painful bladder symptoms in IC.


Assuntos
Cistite Intersticial/metabolismo , Receptores Purinérgicos P2/biossíntese , Bexiga Urinária/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Gatos , Feminino , Imunofluorescência , Masculino , Músculo Liso/metabolismo , Fibras Nervosas/metabolismo , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X , Bexiga Urinária/inervação , Urotélio/metabolismo
15.
Neuroscience ; 123(4): 867-74, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14751280

RESUMO

Previous studies have raised the possibility that a decrease in voltage-gated K+ currents may contribute to hyperexcitability of injured dorsal root ganglion (DRG) neurons and the emergence of neuropathic pain. We examined the effects of axotomy on mRNA levels for various Kv1 family subunits and voltage-gated K+ currents in L4-L5 DRG neurons from sham-operated and sciatic nerve-transected rats. RNase protection assay revealed that Kv1.1 and Kv 1.2 mRNAs are highly abundant while Kv1.3, Kv1.4, Kv1.5 and Kv1.6 mRNAs were detected at lower levels in L4-L5 DRGs from sham and intact rats. Axotomy significantly decreased Kv1.1, Kv1.2, Kv1.3 and Kv1.4 mRNA levels by approximately 35%, approximately 60%, approximately 40% and approximately 80%, respectively, but did not significantly change Kv1.5 or Kv1.6 mRNA levels. Patch clamp recordings revealed two types of K+ currents in small-sized L4-L5 DRG neurons: sustained delayed rectifier currents elicited from a -40 mV holding potential and slowly inactivating A-type currents that was additionally activated from a -120 mV holding potential. Axotomy decreased both types of K+ currents by 50-60% in injured DRG neurons. In addition, axotomy increased the alpha-dendrotoxin sensitivity of the delayed rectifier, but not slow A-type K+ currents in injured DRG neurons. These results suggest that Kv1.1 and Kv1.2 subunits are major components of voltage-gated K+ channels in L4-L5 DRG neurons and that the decreased expression of Kv1-family subunits significantly contributes to the reduction and altered kinetics of Kv current in axotomized neurons.


Assuntos
Axotomia , Venenos Elapídicos/farmacologia , Gânglios Espinais/citologia , Neurônios/efeitos dos fármacos , Canais de Potássio/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Feminino , Gânglios Espinais/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/genética , Neurônios/metabolismo , Técnicas de Patch-Clamp/métodos , Potássio/metabolismo , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/lesões , Nervo Isquiático/fisiopatologia , Estatísticas não Paramétricas
16.
Am J Physiol Renal Physiol ; 285(3): F423-9, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12759226

RESUMO

ATP can be released from a variety of cell types by mechanical stimulation; however, the mechanism for this release and the influence of pathology are not well understood. The present study examined intracellular signaling mechanisms involved in swelling-evoked (exposure to a hypotonic solution) release of ATP in urothelial cells from normal cats and cats diagnosed with interstitial cystitis (feline interstitial cystitis; FIC). Using the luciferin-luciferase bioluminescent assay, we demonstrate that swelling-evoked ATP release is significantly elevated in FIC cells. In both normal and FIC cells, ATP release was significantly decreased (mean 70% decrease) by application of blockers of stretch-activated channels (amiloride or gadolinium), as well as brefeldin A and monensin (mean 90% decrease), suggesting that ATP release occurs when ATP-containing vesicles fuse with the plasma membrane. Swelling-evoked release was reduced after removal of external calcium (65%), and release was blocked by incubation with BAPTA-AM or agents that interfere with internal calcium stores (caffeine, ryanodine, heparin, or 2-aminoethoxydiphenyl borate). In addition, agents known to act through inositol 1,4,5-triphosphate (IP3) receptors (thapsigargin, acetylcholine) release significantly more ATP in FIC compared with normal urothelium. Taken together, these results suggest that FIC results in a novel hypersensitivity to mechanical stimuli that may involve alterations in IP3-sensitive pathways.


Assuntos
Trifosfato de Adenosina/metabolismo , Doenças do Gato/fisiopatologia , Cistite Intersticial/fisiopatologia , Bexiga Urinária/metabolismo , Urotélio/metabolismo , Animais , Cálcio/metabolismo , Doenças do Gato/metabolismo , Gatos , Células Cultivadas , Cistite Intersticial/metabolismo , Feminino , Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Transdução de Sinais , Bexiga Urinária/patologia , Urotélio/patologia
17.
BJU Int ; 91(7): 691-6, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12699487

RESUMO

OBJECTIVE: To determine whether over-expression of nitric oxide synthase (NOS) in the corpus cavernosum of the penis improves erectile function, as NO is an important transmitter for genitourinary tract function, mediating smooth muscle relaxation and being essential for penile erection. MATERIALS AND METHODS: The inducible form of the enzyme NOS (iNOS) was introduced into the corpus cavernosum of adult Sprague-Dawley rats (250-300 g) by injecting a solution of plasmid, adenovirus or adenovirus-transduced myoblast cells (adeno-myoblasts). Plasmid, adenovirus and adeno-myoblasts encoding the expression of the beta-galactosidase reporter gene were also injected into rats. RESULTS: Throughout the corpora cavernosum there was expression of beta-galactosidase after injecting each of the three solutions. Maximum staining was greatest for adeno-myoblast, then adenovirus and then plasmid. The mean (sd) basal intracavernosal pressure (ICP) of iNOS-treated animals (adenovirus and adeno-myoblast) increased to 55 (23) cmH2O, compared with naive animals with a basal ICP of 5 (6) cmH2O (P = 0.001). Stimulating the cavernosal nerve (15 Hz, 1.5 ms, 10-40 V, 1 min) resulted in a doubling of the ICP (adenovirus and adeno-myoblast) from the basal level of the iNOS-treated animals. Direct in situ measurement of NO showed the release of 1-1.3 micro mol/L in the adeno-myoblast penis. CONCLUSION: Myoblast-mediated gene therapy was more successful for delivering iNOS into the corpus cavernosum than direct adenovirus injection or plasmid transfection. Surprisingly, implanting muscle cells into the penis is not only feasible but also beneficial. Gene therapy for NOS may open new avenues of treatment for erectile dysfunction. Control of NOS expression would be necessary to prevent priapism.


Assuntos
Disfunção Erétil/terapia , Óxido Nítrico Sintase/administração & dosagem , Adenoviridae , Animais , Técnicas de Transferência de Genes , Masculino , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II , Pênis/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
18.
Neuroscience ; 116(2): 477-84, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12559102

RESUMO

To evaluate the role of protein kinase C in central muscarinic mechanisms regulating voiding, cystometry was performed in conscious rats. Oxotremorine methiodide, a muscarinic agonist was injected i.c.v. in a dose (0.1 microg/rat) shown previously to alter voiding function. Oxotremorine methiodide was also tested after i.c.v. injection of chelerythrine chloride (a protein kinase C inhibitor, 2 microg/rat) or 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7, a protein kinase inhibitor, 5 nmol/rat). In untreated rats, oxotremorine methiodide elicited a bimodal response consisting of an initial increase in bladder capacity, maximal voiding pressure, pressure threshold and post voiding intravesical pressure, but reduced voiding efficiency and bladder compliance. The second response consisted of a decrease in bladder capacity and bladder compliance, increases in maximal voiding pressure and post voiding intravesical pressure, but no change in pressure threshold or voiding efficiency. However, approximately 20 min after pre-treatment with chelerythrine chloride or H-7 in doses that did not alter voiding function, oxotremorine methiodide decreased bladder capacity, increased maximal voiding pressure, but did not change pressure threshold or voiding efficiency. These results indicate that inhibitory and facilitatory muscarinic mechanisms in the brain that control voiding function involve different second messenger systems. Inhibitory mechanisms which are blocked by chelerythrine chloride or H-7 must involve protein kinase C and normally be inactive because the protein kinase inhibitors alone did not alter voiding. On the other hand, facilitatory muscarinic mechanisms which previous studies showed were tonically active are not mediated by chelerythrine chloride or H-7 sensitive signaling pathways.


Assuntos
Inibição Neural/fisiologia , Proteína Quinase C/metabolismo , Receptores Muscarínicos/metabolismo , Micção/fisiologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Alcaloides , Animais , Benzofenantridinas , Inibidores Enzimáticos/farmacologia , Feminino , Injeções Intraventriculares , Potenciais da Membrana/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Inibição Neural/efeitos dos fármacos , Oxotremorina/farmacologia , Fenantridinas/farmacologia , Proteína Quinase C/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Micção/efeitos dos fármacos
19.
Gene Ther ; 9(23): 1617-26, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12424614

RESUMO

We have tested the feasibility of muscle-based gene therapy and tissue engineering for urological dysfunction using highly purified muscle-derived cells (MDC) that display stem cell characteristics. We then explored the potential use of these MDC as an alternative therapy for the treatment of impaired detrusor contractility. The MDC were genetically engineered to express the gene encoding beta-galactosidase and injected into the bladder walls of SCID mice. The injected bladders were harvested at various time-points after injection and assayed for beta-galactosidase activity; the presence of myofibers within the injected tissue was determined by detection of fast myosin heavy chain isoform (MyHCs). We have demonstrated that the injected MDC are capable of not only surviving in the lower urinary tract, but also improving the contractility of the bladder following an induced injury. Two potential mechanisms can be used to explain this finding. First, we have observed that some of the beta-galactosidase-expressing cells expressed alpha-smooth muscle actin, suggesting a differentiation into smooth muscle. Second, a stain for acetylcholine receptors (AChRs), which identifies the location of neuromuscular junctions, revealed that the myofibers derived from the doner cells became innervated into the bladder as early as 2 weeks after injection. These results suggest that gene therapy and tissue engineering based on MDC potentially can be used for urological dysfunction.


Assuntos
Terapia Genética/métodos , Miócitos de Músculo Liso/transplante , Incontinência Urinária/terapia , Actinas/metabolismo , Animais , Diferenciação Celular , Transplante de Células , Estudos de Viabilidade , Técnicas de Transferência de Genes , Marcadores Genéticos , Camundongos , Camundongos SCID , Contração Muscular , Fibras Musculares Esqueléticas/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Junção Neuromuscular/patologia , Ratos , Ratos Sprague-Dawley , Transplante de Células-Tronco , Engenharia Tecidual/métodos , Bexiga Urinária/metabolismo , Bexiga Urinária/fisiopatologia , Incontinência Urinária/patologia , Incontinência Urinária/fisiopatologia
20.
Nat Neurosci ; 5(9): 856-60, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12161756

RESUMO

In the urinary bladder, the capsaicin-gated ion channel TRPV1 is expressed both within afferent nerve terminals and within the epithelial cells that line the bladder lumen. To determine the significance of this expression pattern, we analyzed bladder function in mice lacking TRPV1. Compared with wild-type littermates, trpv1(-/-) mice had a higher frequency of low-amplitude, non-voiding bladder contractions. This alteration was accompanied by reductions in both spinal cord signaling and reflex voiding during bladder filling (under anesthesia). In vitro, stretch-evoked ATP release and membrane capacitance changes were diminished in bladders excised from trpv1(-/-) mice, as was hypoosmolality-evoked ATP release from cultured trpv1(-/-) urothelial cells. These findings indicate that TRPV1 participates in normal bladder function and is essential for normal mechanically evoked purinergic signaling by the urothelium.


Assuntos
Trifosfato de Adenosina/metabolismo , Mecanorreceptores/metabolismo , Neurônios Aferentes/metabolismo , Receptores de Droga/deficiência , Bexiga Urinária/inervação , Micção/genética , Fibras Aferentes Viscerais/metabolismo , Ácido Acético/farmacologia , Animais , Capsaicina/farmacologia , Células Cultivadas , Imuno-Histoquímica , Masculino , Mecanorreceptores/efeitos dos fármacos , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Contração Muscular/efeitos dos fármacos , Contração Muscular/genética , Músculo Liso/efeitos dos fármacos , Músculo Liso/inervação , Músculo Liso/fisiopatologia , Neurônios Aferentes/efeitos dos fármacos , Óxido Nítrico/metabolismo , Estimulação Física , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de Droga/efeitos dos fármacos , Receptores de Droga/genética , Reflexo/efeitos dos fármacos , Reflexo/genética , Transdução de Sinais/fisiologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiopatologia , Micção/efeitos dos fármacos , Urotélio/inervação , Urotélio/patologia , Urotélio/ultraestrutura , Fibras Aferentes Viscerais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA