Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 85(11): 11D608, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430184

RESUMO

A monochromatic X-ray backlighter based on Bragg reflection from a spherically bent quartz crystal has been developed for the MAGPIE pulsed power generator at Imperial College (1.4 MA, 240 ns) [I. H. Mitchell et al., Rev. Sci. Instrum. 67, 1533 (2005)]. This instrument has been used to diagnose high energy density physics experiments with 1.865 keV radiation (Silicon He-α) from a laser plasma source driven by a ∼7 J, 1 ns pulse from the Cerberus laser. The design of the diagnostic, its characterisation and performance, and initial results in which the instrument was used to radiograph a shock physics experiment on MAGPIE are discussed.

2.
Rev Sci Instrum ; 85(11): 11E502, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430344

RESUMO

A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7-14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.

3.
Phys Rev Lett ; 108(14): 145002, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22540799

RESUMO

A Thomson scattering diagnostic has been used to measure the parameters of cylindrical wire array Z pinch plasmas during the ablation phase. The scattering operates in the collective regime (α>1) allowing spatially localized measurements of the ion or electron plasma temperatures and of the plasma bulk velocity. The ablation flow is found to accelerate towards the axis reaching peak velocities of 1.2-1.3×10(7) cm/s in aluminium and ∼1×10(7) cm/s in tungsten arrays. Precursor ion temperature measurements made shortly after formation are found to correspond to the kinetic energy of the converging ablation flow.

4.
Phys Rev Lett ; 106(20): 205002, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21668237

RESUMO

A new wire array configuration has been used to create thin shell-like implosions in a cylindrical array. The setup introduces a ~5 kA, ~25 ns current prepulse followed by a ~140 ns current-free interval before the application of the main (~1 MA) current pulse. The prepulse volumetrically heats the wires which expand to ~1 mm diameter leaving no dense wire core and without development of instabilities. The main current pulse then ionizes all the array mass resulting in suppression of the ablation phase, an accelerating implosion, and no trailing mass. Rayleigh-Taylor instability growth in the imploding plasma is inferred to be seeded by µm-scale perturbations on the surface of the wires. The absence of wire cores is found to be the critical factor in altering the implosion dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...