Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant ; 17(7): 1129-1150, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38835170

RESUMO

Mescaline, among the earliest identified natural hallucinogens, holds great potential in psychotherapy treatment. Nonetheless, despite the existence of a postulated biosynthetic pathway for more than half a century, the specific enzymes involved in this process are yet to be identified. In this study, we investigated the cactus Lophophora williamsii (Peyote), the largest known natural producer of the phenethylamine mescaline. We employed a multi-faceted approach, combining de novo whole-genome and transcriptome sequencing with comprehensive chemical profiling, enzymatic assays, molecular modeling, and pathway engineering for pathway elucidation. We identified four groups of enzymes responsible for the six catalytic steps in the mescaline biosynthetic pathway, and an N-methyltransferase enzyme that N-methylates all phenethylamine intermediates, likely modulating mescaline levels in Peyote. Finally, we reconstructed the mescaline biosynthetic pathway in both Nicotiana benthamiana plants and yeast cells, providing novel insights into several challenges hindering complete heterologous mescaline production. Taken together, our study opens up avenues for exploration of sustainable production approaches and responsible utilization of mescaline, safeguarding this valuable natural resource for future generations.


Assuntos
Vias Biossintéticas , Alucinógenos , Mescalina , Alucinógenos/metabolismo , Mescalina/metabolismo , Nicotiana/metabolismo , Nicotiana/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
3.
Nat Plants ; 9(5): 817-831, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37127748

RESUMO

Modulation of the endocannabinoid system is projected to have therapeutic potential in almost all human diseases. Accordingly, the high demand for novel cannabinoids stimulates the discovery of untapped sources and efficient manufacturing technologies. Here we explored Helichrysum umbraculigerum, an Asteraceae species unrelated to Cannabis sativa that produces Cannabis-type cannabinoids (for example, 4.3% cannabigerolic acid). In contrast to Cannabis, cannabinoids in H. umbraculigerum accumulate in leaves' glandular trichomes rather than in flowers. The integration of de novo whole-genome sequencing data with unambiguous chemical structure annotation, enzymatic assays and pathway reconstitution in Nicotiana benthamiana and in Saccharomyces cerevisiae has uncovered the molecular and chemical features of this plant. Apart from core biosynthetic enzymes, we reveal tailoring ones producing previously unknown cannabinoid metabolites. Orthology analyses demonstrate that cannabinoid synthesis evolved in parallel in H. umbraculigerum and Cannabis. Our discovery provides a currently unexploited source of cannabinoids and tools for engineering in heterologous hosts.


Assuntos
Canabinoides , Cannabis , Humanos , Canabinoides/metabolismo , Cannabis/genética , Flores/metabolismo , Folhas de Planta/metabolismo
4.
Plant Mol Biol ; 109(6): 761-780, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35524936

RESUMO

Drought is one of the main environmental stresses that negatively impacts vegetative and reproductive yield. Water deficit responses are determined by the duration and intensity of the stress, which, together with plant genotype, will define the chances of plant survival. The metabolic adjustments in response to water deficit are complex and involve gene expression modulation regulated by DNA-binding proteins and epigenetic modifications. This last mechanism may also regulate the activity of transposable elements, which in turn impact the expression of nearby loci. Setaria italica plants submitted to five water deficit regimes were analyzed through a phenotypical approach, including growth, physiological, RNA-seq and sRNA-seq analyses. The results showed a progressive reduction in yield as a function of water deficit intensity associated with signaling pathway modulation and metabolic adjustments. We identified a group of loci that were consistently associated with drought responses, some of which were related to water deficit perception, signaling and regulation. Finally, an analysis of the transcriptome and sRNAome allowed us to identify genes putatively regulated by TE- and sRNA-related mechanisms and an intriguing positive correlation between transcript levels and sRNA accumulation in gene body regions. These findings shed light on the processes that allow S. italica to overcome drought and survive under water restrictive conditions.


Assuntos
Pequeno RNA não Traduzido , Setaria (Planta) , Adaptação Fisiológica/genética , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Pequeno RNA não Traduzido/metabolismo , Setaria (Planta)/genética , Estresse Fisiológico/genética , Água/metabolismo
5.
BMC Plant Biol ; 19(1): 112, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30902042

RESUMO

BACKGROUND: Mal de Río Cuarto virus (MRCV) infects several monocotyledonous species including maize and wheat. Infected plants show shortened internodes, partial sterility, increased tillering and reduced root length. To better understand the molecular basis of the plant-virus interactions leading to these symptoms, we combined RNA sequencing with metabolite and hormone measurements. RESULTS: More than 3000 differentially accumulated transcripts (DATs) were detected in MRCV-infected wheat plants at 21 days post inoculation compared to mock-inoculated plants. Infected plants exhibited decreased levels of TaSWEET13 transcripts, which are involved in sucrose phloem loading. Soluble sugars, starch, trehalose 6-phosphate (Tre6P), and organic and amino acids were all higher in MRCV-infected plants. In addition, several transcripts related to plant hormone metabolism, transport and signalling were increased upon MRCV infection. Transcripts coding for GA20ox, D14, MAX2 and SMAX1-like proteins involved in gibberellin biosynthesis and strigolactone signalling, were reduced. Transcripts involved in jasmonic acid, ethylene and brassinosteroid biosynthesis, perception and signalling and in auxin transport were also altered. Hormone measurements showed that jasmonic acid, brassinosteroids, abscisic acid and indole-3-acetic acid were significantly higher in infected leaves. CONCLUSIONS: Our results indicate that MRCV causes a profound hormonal imbalance that, together with alterations in sugar partitioning, could account for the symptoms observed in MRCV-infected plants.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Reoviridae/patogenicidade , Açúcares/metabolismo , Triticum/virologia , Brassinosteroides/metabolismo , Citocininas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/virologia , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Triticum/genética , Triticum/metabolismo
6.
Mol Genet Genomics ; 293(2): 463-477, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29188438

RESUMO

Forward genetic screens of induced mutant plant populations are powerful tools to identify genes underlying phenotypes of interest. Using traditional techniques, mapping causative mutations from forward screens is a lengthy, multi-step process, requiring the identification of a broad genetic region followed by candidate gene sequencing to characterize the causal variant. Mapping by whole genome sequencing accelerates the identification of causal mutations by simultaneously defining a mapping region and providing information on the induced genetic variants. In wheat, although the availability of a high-quality draft genome assembly facilitates mapping and mutation calling, whole genome resequencing remains prohibitively expensive due to its large genome. In the current study, we used exome sequencing as a complexity reduction strategy to detect mutations associated with a target phenotype. In a segregating wheat EMS population, we identified a clear peak region on chromosome arm 4BS associated with increased plant height. Although none of the significant SNPs seemed causative for the mutant phenotype, they were sufficient to identify a linked ~ 1.9 Mb deletion encompassing nine genes. These genes included Rht-B1, which is known to have a strong effect on plant height and is a strong candidate for the observed phenotype. We performed simulation experiments to determine the impacts of sequencing depth and bulk size and discuss the importance of considering each factor when designing mapping-by-sequencing experiments in wheat. This approach can accelerate the identification of candidate causal point mutations or linked deletions underlying important phenotypes.


Assuntos
Mapeamento Cromossômico/métodos , Sequenciamento do Exoma/métodos , Mutação , Triticum/genética , Cromossomos de Plantas/genética , Genes de Plantas/genética , Genética Populacional/métodos , Genoma de Planta/genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Triticum/crescimento & desenvolvimento
7.
Metabolomics ; 14(11): 148, 2018 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-30830402

RESUMO

BACKGROUND: Until recently, plant metabolomics have provided a deep understanding on the metabolic regulation in individual plants as experimental units. The application of these techniques to agricultural systems subjected to more complex interactions is a step towards the implementation of translational metabolomics in crop breeding. AIM OF REVIEW: We present here a review paper discussing advances in the knowledge reached in the last years derived from the application of metabolomic techniques that evolved from biomarker discovery to improve crop yield and quality. KEY SCIENTIFIC CONCEPTS OF REVIEW: Translational metabolomics applied to crop breeding programs.


Assuntos
Produção Agrícola/métodos , Metabolômica/métodos , Melhoramento Vegetal/métodos
8.
Virus Res ; 230: 19-28, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087398

RESUMO

Mal de Río Cuarto virus (MRCV) is a member of the Fijivirus genus, within the Reoviridae family, that replicates and assembles in cytoplasmic inclusion bodies called viroplasms. In this study, we investigated interactions between ten MRCV proteins by yeast two-hybrid (Y2H) assays and identified interactions of non-structural proteins P6/P6, P9-2/P9-2 and P6/P9-1. P9-1 and P6 are the major and minor components of the viroplasms respectively, whereas P9-2 is an N-glycosylated membrane protein of unknown function. Interactions involving P6 and P9-1 were confirmed by bimolecular fluorescence complementation (BiFC) in rice protoplasts. We demonstrated that a region including a predicted coiled-coil domain within the C-terminal moiety of P6 was necessary for P6/P6 and P6/P9-1 interactions. In turn, a short C-terminal arm was necessary for the previously reported P9-1 self-interaction. Transient expression of these proteins by agroinfiltration of Nicotiana benthamiana leaves showed very low accumulation levels and further in silico analyses allowed us to identify conserved PEST degradation sequences [rich in proline (P), glutamic acid (E), serine (S), and threonine (T)] within P6 and P9-1. The removal of these PEST sequences resulted in a significant increase of the accumulation of both proteins.


Assuntos
Interações Hospedeiro-Patógeno , Corpos de Inclusão/virologia , Folhas de Planta/virologia , Protoplastos/virologia , Reoviridae/genética , Proteínas não Estruturais Virais/genética , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Expressão Gênica , Corpos de Inclusão/química , Corpos de Inclusão/metabolismo , Oryza/virologia , Doenças das Plantas/virologia , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteólise , Protoplastos/metabolismo , Protoplastos/ultraestrutura , Reoviridae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Nicotiana/virologia , Técnicas do Sistema de Duplo-Híbrido , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
9.
Ecol Evol ; 3(10): 3388-400, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24223277

RESUMO

Single sequence repeats (SSR) developed for Sorghum bicolor were used to characterize the genetic distance of 46 different Sorghum halepense (Johnsongrass) accessions from Argentina some of which have evolved toward glyphosate resistance. Since Johnsongrass is an allotetraploid and only one subgenome is homologous to cultivated sorghum, some SSR loci amplified up to two alleles while others (presumably more conserved loci) amplified up to four alleles. Twelve SSR providing information of 24 loci representative of Johnsongrass genome were selected for genetic distance characterization. All of them were highly polymorphic, which was evidenced by the number of different alleles found in the samples studied, in some of them up to 20. UPGMA and Mantel analysis showed that Johnsongrass glyphosate-resistant accessions that belong to different geographic regions do not share similar genetic backgrounds. In contrast, they show closer similarity to their neighboring susceptible counterparts. Discriminant Analysis of Principal Components using the clusters identified by K-means support the lack of a clear pattern of association among samples and resistance status or province of origin. Consequently, these results do not support a single genetic origin of glyphosate resistance. Nucleotide sequencing of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from glyphosate-resistant and susceptible accessions collected from different geographic origins showed that none presented expected mutations in aminoacid positions 101 and 106 which are diagnostic of target-site resistance mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...