Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 21(19): 8213-8219, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34597058

RESUMO

Controlling magnon densities in magnetic materials enables driving spin transport in magnonic devices. We demonstrate the creation of large, out-of-equilibrium magnon densities in a thin-film magnetic insulator via microwave excitation of coherent spin waves and subsequent multimagnon scattering. We image both the coherent spin waves and the resulting incoherent magnon gas using scanning-probe magnetometry based on electron spins in diamond. We find that the gas extends unidirectionally over hundreds of micrometers from the excitation stripline. Surprisingly, the gas density far exceeds that expected for a boson system following a Bose-Einstein distribution with a maximum value of the chemical potential. We characterize the momentum distribution of the gas by measuring the nanoscale spatial decay of the magnetic stray fields. Our results show that driving coherent spin waves leads to a strong out-of-equilibrium occupation of the spin-wave band, opening new possibilities for controlling spin transport and magnetic dynamics in target directions.

2.
Nat Commun ; 12(1): 4914, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389705

RESUMO

The realization of hybrid superconductor-semiconductor quantum devices, in particular a topological qubit, calls for advanced techniques to readily and reproducibly engineer induced superconductivity in semiconductor nanowires. Here, we introduce an on-chip fabrication paradigm based on shadow walls that offers substantial advances in device quality and reproducibility. It allows for the implementation of hybrid quantum devices and ultimately topological qubits while eliminating fabrication steps such as lithography and etching. This is critical to preserve the integrity and homogeneity of the fragile hybrid interfaces. The approach simplifies the reproducible fabrication of devices with a hard induced superconducting gap and ballistic normal-/superconductor junctions. Large gate-tunable supercurrents and high-order multiple Andreev reflections manifest the exceptional coherence of the resulting nanowire Josephson junctions. Our approach enables the realization of 3-terminal devices, where zero-bias conductance peaks emerge in a magnetic field concurrently at both boundaries of the one-dimensional hybrids.

4.
EJNMMI Phys ; 7(1): 9, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32048097

RESUMO

BACKGROUND: Quantitative SPECT imaging in targeted radionuclide therapy with lutetium-177 holds great potential for individualized treatment based on dose assessment. The establishment of dose-effect relations requires a standardized method for SPECT quantification. The purpose of this multi-center study is to evaluate quantitative accuracy and inter-system variations of different SPECT/CT systems with corresponding commercially available quantitative reconstruction algorithms. This is an important step towards a vendor-independent standard for quantitative lutetium-177 SPECT. METHODS: Four state-of-the-art SPECT/CT systems were included: Discovery™ NM/CT 670Pro (GE Healthcare), Symbia Intevo™, and two Symbia™ T16 (Siemens Healthineers). Quantitative accuracy and inter-system variations were evaluated by repeatedly scanning a cylindrical phantom with 6 spherical inserts (0.5 - 113 ml). A sphere-to-background activity concentration ratio of 10:1 was used. Acquisition settings were standardized: medium energy collimator, body contour trajectory, photon energy window of 208 keV (± 10%), adjacent 20% lower scatter window, 2 × 64 projections, 128 × 128 matrix size, and 40 s projection time. Reconstructions were performed using GE Evolution with Q.Metrix™, Siemens xSPECT Quant™, Siemens Broad Quantification™ or Siemens Flash3D™ algorithms using vendor recommended settings. In addition, projection data were reconstructed using Hermes SUV SPECT™ with standardized reconstruction settings to obtain a vendor-neutral quantitative reconstruction for all systems. Volumes of interest (VOI) for the spheres were obtained by applying a 50% threshold of the sphere maximum voxel value corrected for background activity. For each sphere, the mean and maximum recovery coefficient (RCmean and RCmax) of three repeated measurements was calculated, defined as the imaged activity concentration divided by the actual activity concentration. Inter-system variations were defined as the range of RC over all systems. RESULTS: RC decreased with decreasing sphere volume. Inter-system variations with vendor-specific reconstructions were between 0.06 and 0.41 for RCmean depending on sphere size (maximum 118% quantification difference), and improved to 0.02-0.19 with vendor-neutral reconstructions (maximum 38% quantification difference). CONCLUSION: This study shows that eliminating sources of possible variation drastically reduces inter-system variation in quantification. This means that absolute SPECT quantification for 177Lu is feasible in a multi-center and multi-vendor setting; however, close agreement between vendors and sites is key for multi-center dosimetry and quantitative biomarker studies.

5.
Nano Lett ; 19(6): 3987-3992, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31136192

RESUMO

Diamond membrane devices containing optically coherent nitrogen-vacancy (NV) centers are key to enable novel cryogenic experiments such as optical ground-state cooling of hybrid spin-mechanical systems and efficient entanglement distribution in quantum networks. Here, we report on the fabrication of a (3.4 ± 0.2) µm thin, smooth (surface roughness rq < 0.4 nm over an area of 20 µm by 30 µm) diamond membrane containing individually resolvable, narrow linewidth (< 100 MHz) NV centers. We fabricate this sample via a combination of high-energy electron irradiation, high-temperature annealing, and an optimized etching sequence found via a systematic study of the diamond surface evolution on the microscopic level in different etch chemistries. Although our particular device dimensions are optimized for cavity-enhanced entanglement generation between distant NV centers in open, tunable microcavities, our results have implications for a broad range of quantum experiments that require the combination of narrow optical transitions and micrometer-scale device geometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...