Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 11: 1141494, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026384

RESUMO

Since the start of the COVID-19 pandemic in 2020, wastewater surveillance programs were established, or upscaled, in many countries around the world and have proven to be a cost-effective way of monitoring infectious disease pathogens. Many of these programs use RT-qPCR, and quantify the viral concentrations in samples based on standard curves, by including preparations of a reference material with known nucleic acid or virus concentrations in the RT-qPCR analyses. In high-throughput monitoring programs it is possible to combine data from multiple previous runs, circumventing the need for duplication and resulting in decreased costs and prolonged periods during which the reference material is obtained from the same batch. However, over time, systematic shifts in standard curves are likely to occur. This would affect the reliability and usefulness of wastewater surveillance as a whole. We aim to find an optimal combination of standard curve data to compensate for run-to-run measurement variance while ensuring enough flexibility to capture systematic longitudinal shifts. Based on more than 4000 observations obtained with the CDC N1 and N2 assays, taken as a part of the National Sewage Surveillance program at the Dutch National Institute for Public Health and the Environment, we show that seasonal and long-term shifts in RT-qPCR efficiency and sensitivity occur. We find that in our setting, using five days of standard-curve data to quantify, results in the least error prone curve or best approximation. This results in differences up to 100% in quantified viral loads when averaged out over a nationwide program of >300 treatment plants. Results show that combining standard curves from a limited set of runs can be a valid approach to quantification without obscuring the trends in the viral load of interest.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , Pandemias , Reprodutibilidade dos Testes , COVID-19/diagnóstico , COVID-19/epidemiologia , Reação em Cadeia da Polimerase , Teste para COVID-19
2.
Curr Res Microb Sci ; 3: 100172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518166

RESUMO

Bordetella pertussis is the causative agent of a respiratory infection known as whooping cough. With the goal of improving the production of outer-membrane vesicles (OMVs), we studied here the mechanisms that are involved in maintaining lipid asymmetry in the outer membrane of this organism. We identified homologues of the phospholipid (PL)-transport systems Mla and Pqi and of outer-membrane phospholipase A (OMPLA). Inactivation of mlaF, encoding the ATPase of the Mla system, together with pldA, which encodes OMPLA, resulted in an accumulation of PLs at the cell surface as demonstrated by the binding of a phosphatidylethanolamine-specific fluorescent probe to intact cells of this strain. The corresponding single mutations did hardly or not affect binding of the probe. These results are consistent with a retrograde transport directionality of the Mla system in B. pertussis and indicate that PLs accumulating at the cell surface in the mlaF mutant are degraded by OMPLA. Consequently, the mlaF mutant showed a conditional growth defect due to the production of free fatty acids by OMPLA, which could be compensated by inactivation of OMPLA or by sequestration of the produced fatty acids with starch. The mlaF pldA double mutant showed markedly increased OMV production, and representative antigens were detected in these OMVs as in wild-type OMVs. Further phenotypic characterization showed that the barrier function of the outer membrane of the mlaF pldA mutant was compromised as manifested by increased susceptibility to SDS and to several antibiotics. Moreover, inactivation of mlaF alone or together with pldA resulted in increased biofilm formation, which was, however, not directly related to increased vesiculation as the addition of purified OMVs to the wild-type strain decreased biofilm formation. We conclude that the absence of MlaF together with OMPLA results in PL accumulation in the outer leaflet of the outer membrane, and the increased vesiculation of the mutant could be useful in the development of novel, OMV-based pertussis vaccines.

4.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887374

RESUMO

The Gram-negative bacterium Bordetella pertussis is the causative agent of a respiratory infection known as whooping cough. Previously developed whole-cell pertussis vaccines were effective, but appeared to be too reactogenic mainly due to the presence of lipopolysaccharide (LPS, also known as endotoxin) in the outer membrane (OM). Here, we investigated the possibility of reducing endotoxicity by modulating the LPS levels. The promoter of the lpxC gene, which encodes the first committed enzyme in LPS biosynthesis, was replaced by an isopropyl ß-D-1-thiogalactopyranoside (IPTG)-inducible promoter. The IPTG was essential for growth, even when the construct was moved into a strain that should allow for the replacement of LPS in the outer leaflet of the OM with phospholipids by defective phospholipid transporter Mla and OM phospholipase A. LpxC depletion in the absence of IPTG resulted in morphological changes of the cells and in overproduction of outer-membrane vesicles (OMVs). The reduced amounts of LPS in whole-cell preparations and in isolated OMVs of LpxC-depleted cells resulted in lower activation of Toll-like receptor 4 in HEK-Blue reporter cells. We suggest that, besides lipid A engineering, also a reduction in LPS synthesis is an attractive strategy for the production of either whole-cell- or OMV-based vaccines, with reduced reactogenicity for B. pertussis and other Gram-negative bacteria.


Assuntos
Bordetella pertussis , Coqueluche , Bordetella pertussis/genética , Endotoxinas , Bactérias Gram-Negativas/metabolismo , Humanos , Isopropiltiogalactosídeo , Lipopolissacarídeos/metabolismo , Coqueluche/prevenção & controle
5.
FEMS Microbiol Lett ; 369(1)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35700015

RESUMO

Outer-membrane vesicles (OMVs) are promising tools in the development of novel vaccines against the respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica. Unfortunately, vesiculation by bordetellae is too low for cost-effective vaccine production. In other bacteria, iron limitation or inactivation of the fur gene has been shown to increase OMV production, presumably by downregulation of the mla genes, which encode machinery for maintenance of lipid asymmetry in the outer membrane. Here, we followed a similar approach in bordetellae. Whereas a fur mutant was readily obtained in B. bronchiseptica, a B. pertussis fur mutant could only be obtained in iron-deplete conditions, indicating that a fur mutation is conditionally lethal in this bacterium. The fur mutants displayed a growth defect in iron-replete media, presumably because constitutive expression of iron-uptake systems resulted in iron intoxication. Accordingly, expression of the Escherichia coli ferritin FtnA to sequester intracellularly accumulated iron rescued the growth of the mutants in these media. The fur mutations led to the constitutive expression of novel vaccine candidates, such as the TonB-dependent receptors FauA for the siderophore alcaligin and BhuR for heme. However, neither inactivation of fur nor growth under iron limitation improved vesiculation, presumably because the expression of the mla genes appeared unaffected.


Assuntos
Bordetella bronchiseptica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bordetella bronchiseptica/genética , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Sideróforos/metabolismo
6.
Res Microbiol ; 173(4-5): 103937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35248703

RESUMO

Current vaccines against Bordetella pertussis do not prevent colonization and transmission of the bacteria, and vaccine-induced immunity wanes rapidly. Besides, efficacy of vaccines for Bordetella bronchiseptica remains unclear. Novel vaccines could be based on outer-membrane vesicles (OMVs), but vesiculation of bordetellae needs to be increased for cost-effective vaccine production. Here, we focused on increasing OMV production by reducing the anchoring of the outer membrane to the peptidoglycan layer. Inactivation of rmpM, tolR, and pal failed, presumably because their products are essential in bordetellae. Conditional pal mutants were constructed, which were hypervesiculating under Pal-depletion conditions. SDS-PAGE and Western blot analyses showed that the protein composition of OMVs produced under Pal-depletion conditions resembled that of the outer membrane but differed from that of OMVs released by the wild type. Pal depletion affected the cell morphology and appeared to increase the amounts of cell-surface-exposed phospholipids, possibly reflecting a role for the Tol-Pal system in retrograde phospholipid transport. We also identified additional lipoproteins in bordetellae with a putative peptidoglycan-anchoring domain. However, their inactivation did not influence OMV production. We conclude that the conditional pal mutants could be valuable for the development of OMV-based vaccines.


Assuntos
Bordetella , Peptidoglicano , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Bordetella/metabolismo , Lipoproteínas/genética , Lipídeos de Membrana
7.
Curr Res Microb Sci ; 2: 100009, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841303

RESUMO

Pertussis, also known as whooping cough, is caused by the Gram-negative bacterium Bordetella pertussis, an obligate human pathogen. Despite high vaccination rates in high-income countries, resurgence of pertussis cases is an occurring problem that urges the necessity of developing an improved vaccine. Likewise, the efficacy of vaccines for Bordetella bronchiseptica, which causes similar disease in pigs and companion animals, is debatable. A promising approach for novel vaccines is the use of outer membrane vesicles (OMVs). However, spontaneous OMV (sOMV) release by Bordetella spp. is too low for cost-effective vaccine production. Therefore, we investigated the influence of growth in various media commonly used for culturing Bordetella in the Bvg+, i.e. virulent, phase and of a heat shock applied to inactivate the cells on OMV production. Inactivation of the bacterial cells at 56 °C before OMV isolation greatly enhanced OMV release in both Bordetella spp. without causing significant cell lysis. The growth medium used barely affected the efficiency of OMV release but did affect the protein pattern of the OMVs. Differences were found to be related, at least in part, to different availability of the nutrient metals iron and zinc in the media and include expression of potentially relevant vaccine antigens, such as the receptors FauA and ZnuD. The protein content of OMVs released by heat shock was comparable to that of sOMVs as determined by SDS-PAGE and Western blot analysis, and their heat-modifiable electrophoretic mobility suggests that also protein conformation is unaffected. However, significant differences were noticed between the protein content of OMVs and that of a purified outer membrane fraction, with two major outer membrane proteins, porin OmpP and the peptidoglycan-associated RmpM, being underrepresented in the OMVs. Altogether, these results indicate that the application of a heat shock is potentially an important step in the development of cost-effective, OMV-based vaccines for both Bordetella spp.

8.
Curr Res Microb Sci ; 2: 100010, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841304

RESUMO

Host defense peptides (HDPs), such as cathelicidins, are small, cationic, amphipathic peptides and represent an important part of the innate immune system. Most cathelicidins, including the porcine PMAP-36, are membrane active and disrupt the bacterial membrane. For example, a chicken cathelicidin, CATH-2, has been previously shown to disrupt both Escherichia coli membranes and to release, at sub-lethal concentrations, outer membrane vesicles (OMVs). Since OMVs are considered promising vaccine candidates, we sought to investigate the effect of sub-bactericidal concentrations of PMAP-36 on both OMV release by a porcine strain of Bordetella bronchiseptica and on the modulation of immune responses to OMVs. PMAP-36 treatment of bacteria resulted in a slight increase in OMV release. The characteristics of PMAP-36-induced OMVs were compared with those of spontaneously released OMVs and OMVs induced by heat treatment. The stability of both PMAP-36- and heat-induced OMVs was decreased compared to spontaneous OMVs, as shown by dynamic light scattering. Furthermore, treatment of bacteria with PMAP-36 or heat resulted in an increase in negatively charged phospholipids in the resulting OMVs. A large increase in lysophospholipid content was observed in heat-induced OMVs, which was at least partially due to the activity of the outer-membrane phospholipase A (OMPLA). Although PMAP-36 was detected in OMVs isolated from PMAP-36-treated bacteria, the immune response of porcine bone-marrow-derived macrophages to these OMVs was similar as those against spontaneous or heat-induced OMVs. Therefore, the effect of PMAP-36 addition after OMV isolation was investigated. This did decrease cytokine expression of OMV-stimulated macrophages. These results indicate that PMAP-36 is a promising molecule to attenuate undesirable immune responses, for instance in vaccines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...