Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 112(11): 117202, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24702408

RESUMO

A single-molecule magnet placed in a magnetic field perpendicular to its anisotropy axis can be truncated to an effective two-level system, with easily tunable energy splitting. The quantum coherence of the molecular spin is largely determined by the dynamics of the surrounding nuclear spin bath. Here we report the measurement of the nuclear spin-lattice relaxation rate 1/T1n in a single crystal of the single-molecule magnet Mn12-ac, at T ≈ 30 mK in perpendicular fields B⊥ up to 9 T. The relaxation channel at B ≈ 0 is dominated by incoherent quantum tunneling of the Mn12-ac spin S, aided by the nuclear bath itself. However for B⊥>5 T we observe an increase of 1/T1n by several orders of magnitude up to the highest field, despite the fact that the molecular spin is in its quantum mechanical ground state. This striking observation is a consequence of the zero-point quantum fluctuations of S, which allow it to mediate the transfer of energy from the excited nuclear spin bath to the crystal lattice at much higher rates. Our experiment highlights the importance of quantum fluctuations in the interaction between an "effective two-level system" and its surrounding spin bath.

2.
Phys Rev Lett ; 97(7): 077601, 2006 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-17026273

RESUMO

We report muon-spin-relaxation studies in weak transverse fields of the superconductivity in the metal cluster compound, Ga84[N(SiMe3)2]20-Li6Br2(thf)20.2 toluene. The temperature and field dependence of the muon-spin-relaxation rate and Knight shift clearly evidence type II bulk superconductivity below Tc approximately 7.8 K, with Bc1 approximately 0.06 T, Bc2 approximately 0.26 T, kappa approximately 2, and weak flux pinning. The data are well described by the s-wave BCS model with weak electron-phonon coupling in the clean limit. A qualitative explanation for the conduction mechanism in this novel type of narrow-band superconductor is presented.

3.
Phys Rev Lett ; 96(11): 117002, 2006 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16605852

RESUMO

Compelling evidence for band-type conductivity and even bulk superconductivity below Tc approximately 8 K has been found in (69,71)Ga NMR experiments in crystalline ordered, giant Ga84 cluster compounds. This material appears to represent the first realization of a theoretical model proposed by Friedel in 1992 for superconductivity in ordered arrays of weakly coupled, identical metal nanoparticles.

4.
Phys Rev Lett ; 95(22): 227206, 2005 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-16384263

RESUMO

Time-dependent specific heat experiments on the molecular nanomagnet Fe8 and the isotopic enriched analogue 57Fe8 are presented. The inclusion of the 57Fe nuclear spins leads to a huge enhancement of the specific heat below 1 K, ascribed to a strong increase in the spin-lattice relaxation rate gamma arising from incoherent, nuclear-spin-mediated magnetic quantum tunneling (MQT) in the ground doublet. Since gamma is found comparable to the expected tunneling rate, the MQT process has to be inelastic. A model for the coupling of the tunneling spins to the lattice is presented. Under transverse field, a crossover from nuclear-spin-mediated to phonon-induced tunneling is observed.

5.
Phys Rev Lett ; 93(19): 197202, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15600873

RESUMO

We show that the nuclear spin dynamics in the single-molecule magnet Mn12-ac below 1 K is governed by quantum tunneling fluctuations of the cluster spins, combined with intercluster nuclear spin diffusion. We also obtain the first experimental proof that-surprisingly-even deep in the quantum regime the nuclear spins remain in good thermal contact with the lattice phonons. We propose a simple model for how T-independent tunneling fluctuations can relax the nuclear polarization to the lattice that may serve as a framework for more sophisticated theories.

6.
Phys Rev Lett ; 93(11): 117202, 2004 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-15447374

RESUMO

Can magnetic interactions between single-molecule magnets (SMMs) in a crystal establish long-range magnetic order at low temperatures deep in the quantum regime, where the only electron spin fluctuations are due to incoherent magnetic quantum tunneling (MQT)? Put inversely: can MQT provide the temperature dependent fluctuations needed to destroy the ordered state above some finite T(c), although it should basically itself be a T-independent process? Our experiments on two novel Mn4 SMMs provide a positive answer to the above, showing at the same time that MQT in the SMMs has to involve spin-lattice coupling at a relaxation rate equaling that predicted and observed recently for nuclear-spin-mediated quantum relaxation.

7.
Phys Rev Lett ; 90(1): 017206, 2003 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-12570647

RESUMO

We report the first example of a transition to long-range magnetic order in a purely dipolarly interacting molecular magnet. For the magnetic cluster compound Mn6O4Br4(Et2dbm)6, the anisotropy experienced by the total spin S = 12 of each cluster is so small that spin-lattice relaxation remains fast down to the lowest temperatures, thus enabling dipolar order to occur within experimental times at T(c) = 0.16 K. In high magnetic fields, the relaxation rate becomes drastically reduced and the interplay between nuclear- and electron-spin lattice relaxation is revealed.

8.
Chemistry ; 6(23): 4305-21, 2000 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-11140960

RESUMO

Iron and titanium oxide nanoparticles have been synthesized in parallel mesopores of alumina by a novel organometallic "chimie douce" approach that uses bis(toluene)iron(0) (1) and bis(toluene)titanium(0) (2) as precursors. These complexes are molecular sources of iron and titanium in a zerovalent atomic state. In the case of 1, core shell iron/iron oxide particles with a strong magnetic coupling between both components, as revealed by magnetic measurements, are formed. Mössbauer data reveal superparamagnetic particle behavior with a distinct particle size distribution that confirms the magnetic measurements. The dependence of the Mössbauer spectra on temperature and particle size is explained by the influence of superparamagnetic relaxation effects. The coexistence of a paramagnetic doublet and a magnetically split component in the spectra is further explained by a distribution in particle size. From Mössbauer parameters the oxide phase can be identified as low-crystallinity ferrihydrite oxide. In agreement with quantum size effects observed in UV-visible studies, TEM measurements determine the size of the particles in the range 5-8 nm. The particles are mainly arranged alongside the pore walls of the alumina template. TiO2 nanoparticles are formed by depositing 2 in mesoporous alumina template. This produces metallic Ti, which is subsequently oxidized to TiO2 (anatase) within the alumina pores. UV-visible studies show a strong quantum confinement effect for these particles. From UV-visible investigations the particle size is determined to be around 2 nm. XPS analysis of the iron- and titania- embedded nanoparticles reveal the presence of Fe2O3 and TiO2 according to experimental binding energies and the experimental line shapes. Ti4+ and Fe3+ are the only oxidation states of the particles which can be determined by this technique. Hydrogen reduction of the iron/iron-oxide nanoparticles at 500 degrees C under flowing H2/N2 produces a catalyst, which is active towards formation of carbon nanotubes by a CVD process. Depending on the reaction conditions, the formation of smaller carbon nanotubes inside the interior of larger carbon nanotubes within the alumina pores can be achieved. This behavior can be understood by means of selectively turning on and off the iron catalyst by adjusting the flow rate of the gaseous carbon precursor in the CVD process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...