Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Structure ; 26(1): 161-170.e3, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29249608

RESUMO

Membrane proteins remain challenging targets for structural biology, despite much effort, as their native environment is heterogeneous and complex. Most methods rely on detergents to extract membrane proteins from their native environment, but this removal can significantly alter the structure and function of these proteins. Here, we overcome these challenges with a hybrid method to study membrane proteins in their native membranes, combining high-resolution solid-state nuclear magnetic resonance spectroscopy and electron cryotomography using the same sample. Our method allows the structure and function of membrane proteins to be studied in their native environments, across different spatial and temporal resolutions, and the combination is more powerful than each technique individually. We use the method to demonstrate that the bacterial membrane protein YidC adopts a different conformation in native membranes and that substrate binding to YidC in these native membranes differs from purified and reconstituted systems.


Assuntos
Membrana Celular/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/ultraestrutura , Proteínas de Membrana Transportadoras/ultraestrutura , Proteolipídeos/ultraestrutura , Membrana Celular/química , Membrana Celular/metabolismo , Microscopia Crioeletrônica/instrumentação , Microscopia Crioeletrônica/métodos , Detergentes , Tomografia com Microscopia Eletrônica/instrumentação , Tomografia com Microscopia Eletrônica/métodos , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Ressonância Magnética Nuclear Biomolecular/instrumentação , Ressonância Magnética Nuclear Biomolecular/métodos , Estrutura Secundária de Proteína , Proteolipídeos/química , Proteolipídeos/metabolismo
2.
J Bacteriol ; 197(8): 1444-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25666136

RESUMO

UNLABELLED: Membrane proteins need to be properly inserted and folded in the membrane in order to perform a range of activities that are essential for the survival of bacteria. The Sec translocon and the YidC insertase are responsible for the insertion of the majority of proteins into the cytoplasmic membrane. YidC can act in combination with the Sec translocon in the insertion and folding of membrane proteins. However, YidC also functions as an insertase independently of the Sec translocon for so-called YidC-only substrates. In addition, YidC can act as a foldase and promote the proper assembly of membrane protein complexes. Here, we investigate the effect of Escherichia coli YidC depletion on the assembly of penicillin binding proteins (PBPs), which are involved in cell wall synthesis. YidC depletion does not affect the total amount of the specific cell division PBP3 (FtsI) in the membrane, but the amount of active PBP3, as assessed by substrate binding, is reduced 2-fold. A similar reduction in the amount of active PBP2 was observed, while the levels of active PBP1A/1B and PBP5 were essentially similar. PBP1B and PBP3 disappeared from higher-Mw bands upon YidC depletion, indicating that YidC might play a role in PBP complex formation. Taken together, our results suggest that the foldase activity of YidC can extend to the periplasmic domains of membrane proteins. IMPORTANCE: This study addresses the role of the membrane protein insertase YidC in the biogenesis of penicillin binding proteins (PBPs). PBPs are proteins containing one transmembrane segment and a large periplasmic or extracellular domain, which are involved in peptidoglycan synthesis. We observe that in the absence of YidC, two critical PBPs are not correctly folded even though the total amount of protein in the membrane is not affected. Our findings extend the function of YidC as a foldase for membrane protein (complexes) to periplasmic domains of membrane proteins.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Ligação às Penicilinas/biossíntese , Membrana Celular , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Mutação , Proteínas de Ligação às Penicilinas/genética , Plasmídeos , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Virulência
3.
J Bacteriol ; 196(7): 1318-24, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24443530

RESUMO

Proteins of the YidC/OxaI/Alb3 family play a crucial role in the insertion, folding, and/or assembly of membrane proteins in prokaryotes and eukaryotes. Bacillus subtilis has two YidC-like proteins, denoted SpoIIIJ and YqjG. SpoIIIJ and YqjG are largely exchangeable in function, but SpoIIIJ has a unique role in sporulation, while YqjG stimulates competence development. To obtain more insight into the regions important for the sporulation specificity of SpoIIIJ, a series of SpoIIIJ/YqjG chimeras was constructed. These chimeras were tested for functionality during vegetative growth and for their ability to complement the sporulation defect of a spoIIIJ deletion strain. The data suggest an important role for the domain comprising transmembrane segment 2 (TMS2) and its flanking loops in sporulation specificity, with lesser contributions to specificity by TMS1 and TMS3.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Estrutura Terciária de Proteína , Esporos Bacterianos/química , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo
4.
Methods Mol Biol ; 1033: 157-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23996177

RESUMO

The interaction between membrane proteins and their (protein) ligands is conventionally investigated by nonequilibrium methods such as co-sedimentation or pull-down assays. Surface Plasmon Resonance can be used to monitor such binding events in real-time using isolated membranes immobilized to a surface providing insights in the kinetics of binding under equilibrium conditions. This application provides a fast, automated way to detect interacting species and to determine the kinetics and affinity (Kd) of the interaction.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Fracionamento Celular/métodos , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Análise Serial de Proteínas/métodos , Ligação Proteica , Ribossomos/metabolismo , Canais de Translocação SEC , Proteínas SecA , Frações Subcelulares , Vesículas Transportadoras/metabolismo
5.
FEBS Lett ; 587(18): 3083-8, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23954289

RESUMO

SecYEG functions as a membrane channel for protein export. SecY constitutes the protein-conducting pore, which is enwrapped by SecE in a V-shaped manner. In its minimal form SecE consists of a single transmembrane segment that is connected to a surface-exposed amphipathic α-helix via a flexible hinge. These two domains are the major sites of interaction between SecE and SecY. Specific cleavage of SecE at the hinge region, which destroys the interaction between the two SecE domains, reduced translocation. When SecE and SecY were disulfide bonded at the two sites of interaction, protein translocation was not affected. This suggests that the SecY and SecE interactions are static, while the hinge region provides flexibility to allow the SecY pore to open.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Proteínas Arqueais/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Dissulfetos/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Methanococcaceae/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA
6.
J Mol Biol ; 425(22): 4112-24, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23933010

RESUMO

Membrane protein biogenesis in bacteria occurs via dedicated molecular systems SecYEG and YidC that function independently and in cooperation. YidC belongs to the universally conserved Oxa1/Alb3/YidC family of membrane insertases and is believed to associate with translating ribosomes at the membrane surface. Here, we have examined the architecture of the YidC:ribosome complex formed upon YidC-mediated membrane protein insertion. Fluorescence correlation spectroscopy was employed to investigate the complex assembly under physiological conditions. A slightly acidic environment stimulates binding of detergent-solubilized YidC to ribosomes due to electrostatic interactions, while YidC acquires specificity for translating ribosomes at pH-neutral conditions. The nanodisc reconstitution of the YidC to embed it into a native phospholipid membrane environment strongly enhances the YidC:ribosome complex formation. A single copy of YidC suffices for the binding of translating ribosome both in detergent and at the lipid membrane interface, thus being the minimal functional unit. Data reveal molecular details on the insertase functioning and interactions and suggest a new structural model for the YidC:ribosome complex.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Complexos Multiproteicos/química , Ribossomos/química , Detergentes/química , Proteínas de Escherichia coli/metabolismo , Cinética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Ribossomos/metabolismo , Soluções/química
7.
J Bacteriol ; 195(19): 4545-51, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23935050

RESUMO

The YidC/OxaI/Alb3 family of membrane proteins is involved in the biogenesis of integral membrane proteins in bacteria, mitochondria, and chloroplasts. Gram-positive bacteria often contain multiple YidC paralogs that can be subdivided into two major classes, namely, YidC1 and YidC2. The Streptococcus mutans YidC1 and YidC2 proteins possess C-terminal tails that differ in charges (+9 and + 14) and lengths (33 and 61 amino acids). The longer YidC2 C terminus bears a resemblance to the C-terminal ribosome-binding domain of the mitochondrial OxaI protein and, in contrast to the shorter YidC1 C terminus, can mediate the interaction with mitochondrial ribosomes. These observations have led to the suggestion that YidC1 and YidC2 differ in their abilities to interact with ribosomes. However, the interaction with bacterial translating ribosomes has never been addressed. Here we demonstrate that Escherichia coli ribosomes are able to interact with both YidC1 and YidC2. The interaction is stimulated by the presence of a nascent membrane protein substrate and abolished upon deletion of the C-terminal tail, which also abrogates the YidC-dependent membrane insertion of subunit c of the F1F0-ATPase into the membrane. It is concluded that both YidC1 and YidC2 interact with ribosomes, suggesting that the modes of membrane insertion by these membrane insertases are similar.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Ribossomos/metabolismo , Streptococcus mutans/metabolismo , Proteínas de Bactérias/genética , Membrana Celular , Escherichia coli , Ribossomos/genética , Streptococcus mutans/genética
8.
Biol Chem ; 393(11): 1279-90, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23111630

RESUMO

The members of the YidC/Oxa1/Alb3 protein family are evolutionary conserved in all three domains of life. They facilitate the insertion of membrane proteins into bacterial, mitochondrial, and thylakoid membranes and have been implicated in membrane protein folding and complex formation. The major classes of substrates are small hydrophobic subunits of large energy-transducing complexes involved in respiration and light capturing. All YidC-like proteins share a conserved membrane region, whereas the N- and C-terminal regions are diverse and fulfill accessory functions in protein targeting.


Assuntos
Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Sequência Conservada , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Biológicos , Dobramento de Proteína
9.
J Cell Biol ; 199(2): 303-15, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23045547

RESUMO

Membrane protein assembly is a fundamental process in all cells. The membrane-bound Rieske iron-sulfur protein is an essential component of the cytochrome bc(1) and cytochrome b(6)f complexes, and it is exported across the energy-coupling membranes of bacteria and plants in a folded conformation by the twin arginine protein transport pathway (Tat) transport pathway. Although the Rieske protein in most organisms is a monotopic membrane protein, in actinobacteria, it is a polytopic protein with three transmembrane domains. In this work, we show that the Rieske protein of Streptomyces coelicolor requires both the Sec and the Tat pathways for its assembly. Genetic and biochemical approaches revealed that the initial two transmembrane domains were integrated into the membrane in a Sec-dependent manner, whereas integration of the third transmembrane domain, and thus the correct orientation of the iron-sulfur domain, required the activity of the Tat translocase. This work reveals an unprecedented co-operation between the mechanistically distinct Sec and Tat systems in the assembly of a single integral membrane protein.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Streptomyces coelicolor/metabolismo , Sequência de Aminoácidos , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Transporte Proteico , Alinhamento de Sequência
10.
J Biol Chem ; 287(11): 7885-95, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22267723

RESUMO

During co-translational membrane insertion of membrane proteins with large periplasmic domains, the bacterial SecYEG complex needs to interact both with the ribosome and the SecA ATPase. Although the binding sites for SecA and the ribosome overlap, it has been suggested that these ligands can interact simultaneously with SecYEG. We used surface plasmon resonance and fluorescence correlation spectroscopy to examine the interaction of SecA and ribosomes with the SecYEG complex present in membrane vesicles and the purified SecYEG complex present in a detergent-solubilized state or reconstituted into nanodiscs. Ribosome binding to the SecYEG complex is strongly stimulated when the ribosomes are charged with nascent chains of the monotopic membrane protein FtsQ. This binding is competed by an excess of SecA, indicating that binding of SecA and ribosomes to SecYEG is mutually exclusive.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Complexos Multiproteicos/metabolismo , Ribossomos/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Complexos Multiproteicos/genética , Periplasma/genética , Periplasma/metabolismo , Ligação Proteica , Ribossomos/genética , Canais de Translocação SEC , Proteínas SecA
11.
J Biol Chem ; 285(28): 21600-6, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20430899

RESUMO

Kar2p, an essential Hsp70 chaperone in the endoplasmic reticulum of Saccharomyces cerevisiae, facilitates the transport and folding of nascent polypeptides within the endoplasmic reticulum lumen. The chaperone activity of Kar2p is regulated by its intrinsic ATPase activity that can be stimulated by two different nucleotide exchange factors, namely Sil1p and Lhs1p. Here, we demonstrate that the binding requirements for Lhs1p are complex, requiring both the nucleotide binding domain plus the linker domain of Kar2p. In contrast, the IIB domain of Kar2p is sufficient for binding of Sil1p, and point mutations within IIB specifically blocked Sil1p-dependent activation while remaining competent for activation by Lhs1p. Taken together, these results demonstrate that the interactions between Kar2p and its two nucleotide exchange factors can be functionally resolved and are thus mechanistically distinct.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Glutationa Transferase/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
12.
J Biol Chem ; 284(46): 31564-71, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19759005

RESUMO

Protein translocation and folding in the endoplasmic reticulum of Saccharomyces cerevisiae involves two distinct Hsp70 chaperones, Lhs1p and Kar2p. Both proteins have the characteristic domain structure of the Hsp70 family consisting of a conserved N-terminal nucleotide binding domain and a C-terminal substrate binding domain. Kar2p is a canonical Hsp70 whose substrate binding activity is regulated by cochaperones that promote either ATP hydrolysis or nucleotide exchange. Lhs1p is a member of the Grp170/Lhs1p subfamily of Hsp70s and was previously shown to function as a nucleotide exchange factor (NEF) for Kar2p. Here we show that in addition to this NEF activity, Lhs1p can function as a holdase that prevents protein aggregation in vitro. Analysis of the nucleotide requirement of these functions demonstrates that nucleotide binding to Lhs1p stimulates the interaction with Kar2p and is essential for NEF activity. In contrast, Lhs1p holdase activity is nucleotide-independent and unaffected by mutations that interfere with ATP binding and NEF activity. In vivo, these mutants show severe protein translocation defects and are unable to support growth despite the presence of a second Kar2p-specific NEF, Sil1p. Thus, Lhs1p-dependent nucleotide exchange activity is vital for ER protein biogenesis in vivo.


Assuntos
Trifosfato de Adenosina/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Hidrólise , Luciferases/metabolismo , Chaperonas Moleculares , Dados de Sequência Molecular , Mutação/genética , Dobramento de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
13.
Methods Mol Biol ; 390: 17-31, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17951678

RESUMO

Export of secretory proteins across and insertion of membrane proteins into the cytoplasmic membrane of Escherichia coli and other bacteria is mediated by the enzyme complex translocase. The last decade has seen a major advance in the understanding of the mechanism of these processes. A large part of this progress can be attributed to the development of general and powerful methods to study the translocase activity in vitro. Here we describe a transcription-translation method used to analyze the insertion of membrane proteins into E. coli inner membrane vesicles and a rapid and quantitative fluorescent method to analyze the translocation of secretory proteins.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Processamento de Proteína Pós-Traducional , Transporte Proteico
14.
FEBS Lett ; 581(9): 1859-64, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17433305

RESUMO

The Escherichia coli SecYEG complex forms a transmembrane channel for both protein export and membrane protein insertion. Secretory proteins and large periplasmic domains of membrane proteins require for translocation in addition the SecA ATPase. The conserved arginine 357 of SecY is essential for a yet unidentified step in the SecA catalytic cycle. To further dissect its role, we have analysed the requirement for R357 in membrane protein insertion. Although R357 substitutions abolish post-translational translocation, they allow the translocation of periplasmic domains targeted co-translationally by an N-terminal transmembrane segment. We propose that R357 is essential for the initiation of SecA-dependent translocation only.


Assuntos
Adenosina Trifosfatases/fisiologia , Arginina/fisiologia , Proteínas de Bactérias/fisiologia , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/fisiologia , Precursores de Proteínas/metabolismo , Substituição de Aminoácidos , Arginina/genética , Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Membrana/metabolismo , Mutação , Transporte Proteico/genética , Canais de Translocação SEC , Proteínas SecA
15.
J Biol Chem ; 281(40): 29762-8, 2006 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-16880204

RESUMO

YidC is a member of the OxaI family of membrane proteins that has been implicated in the membrane insertion of inner membrane proteins in Escherichia coli. We have recently demonstrated that proteoliposomes containing only YidC support both the stable membrane insertion and the oligomerization of the c subunit of the F(1)F(0) ATP synthase (F(0)c). Here we have shown that two mutants of F(0)c unable to form a functional F(1)F(0) ATPase interact with YidC, require YidC for membrane insertion, but fail to oligomerize. These data show that oligomerization is not essential for the stable YidC-dependent membrane insertion of F(0)c consistent with a function of YidC as a membrane protein insertase.


Assuntos
Substituição de Aminoácidos/genética , ATPases Bacterianas Próton-Translocadoras/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/enzimologia , Escherichia coli/genética , Membranas Intracelulares/enzimologia , Proteínas de Membrana Transportadoras/fisiologia , ATPases Bacterianas Próton-Translocadoras/química , ATPases Bacterianas Próton-Translocadoras/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/química , Processamento de Proteína Pós-Traducional/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
16.
J Mol Biol ; 361(5): 839-49, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16890955

RESUMO

The motor protein SecA drives the translocation of (pre-)proteins across the SecYEG channel in the bacterial cytoplasmic membrane by nucleotide-dependent cycles of conformational changes often referred to as membrane insertion/de-insertion. Despite structural data on SecA and an archaeal homolog of SecYEG, the identity of the sites of interaction between SecA and SecYEG are unknown. Here, we show that SecA can be cross-linked to several residues in cytoplasmic loop 5 (C5) of SecY, and that SecA directly interacts with a part of transmembrane segment 4 (TMS4) of SecY that is buried in the membrane region of SecYEG. Mutagenesis of either the conserved Arg357 in C5 or Glu176 in TMS4 interferes with the catalytic activity of SecA but not with binding of SecA to SecYEG. Our data explain how conformational changes in SecA could be directly coupled to the previously proposed opening mechanism of the SecYEG channel.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Arginina/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Cisteína/metabolismo , Citoplasma/metabolismo , Proteínas de Escherichia coli/química , Glutamina/metabolismo , Cinética , Proteínas de Membrana Transportadoras/química , Dados de Sequência Molecular , Mutagênese , Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Canais de Translocação SEC , Proteínas SecA , Relação Estrutura-Atividade
17.
J Biol Chem ; 280(42): 35255-60, 2005 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-16115882

RESUMO

The ATPase SecA provides the driving force for the transport of secretory proteins across the cytoplasmic membrane of Escherichia coli. SecA exists as a dimer in solution, but the exact oligomeric state of SecA during membrane binding and preprotein translocation is a topic of debate. To study the requirements of oligomeric changes in SecA during protein translocation, a non-dissociable SecA dimer was formed by oxidation of the carboxyl-terminal cysteines. The cross-linked SecA dimer interacts with the SecYEG complex with a similar stoichiometry as non-cross-linked SecA. Cross-linking reversibly disrupts the SecB binding site on SecA. However, in the absence of SecB, the activity of the disulfide-bonded SecA dimer is indistinguishable from wild-type SecA. Moreover, SecYEG binding stabilizes a cold sodium dodecylsulfate-resistant dimeric state of SecA. The results demonstrate that dissociation of the SecA dimer is not an essential feature of the protein translocation reaction.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/química , Membrana Celular/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Cisteína/química , Citoplasma/metabolismo , Dimerização , Dissulfetos/química , Relação Dose-Resposta a Droga , Cinética , Mutação , Oxigênio/química , Oxigênio/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA , Dodecilsulfato de Sódio/química , Ressonância de Plasmônio de Superfície , Fatores de Tempo , Ureia/farmacologia
18.
J Biol Chem ; 279(14): 13769-77, 2004 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-14722060

RESUMO

SecYEG translocase mediates the transport of preproteins across the inner membrane of Escherichia coli. SecA binds the membrane-embedded SecYEG protein-conducting channel with high affinity and then drives the stepwise translocation of preproteins across the membrane through multiple cycles of ATP binding and hydrolysis. We have investigated the kinetics of nucleotide binding to SecA while associated with the SecYEG complex. Lipid-bound SecA was separated from Se-cYEG-bound SecA by sedimentation of the proteoliposomes through a glycerol cushion, which maintains the SecA native state and effectively removes the lipid-bound SecA fraction. Nucleotide binding was assessed by means of fluorescence resonance energy transfer using fluorescent ATP analogues as acceptors of the intrinsic SecA tryptophan fluorescence in the presence of a tryptophanless variant of the SecYEG complex. Binding of SecA to the SecYEG complex elevated the rate of nucleotide exchange at SecA independently of the presence of preprotein. This defines a novel pretranslocation activated state of SecA that is primed for ATP hydrolysis upon preprotein interaction.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico/fisiologia , Transferência de Energia , Hidrólise , Lipossomos/metabolismo , Proteínas de Membrana/metabolismo , Canais de Translocação SEC , Proteínas SecA , Espectrometria de Fluorescência , Triptofano/genética
20.
J Biol Chem ; 278(32): 29581-6, 2003 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-12771143

RESUMO

Translocase mediates the transport of preproteins across the inner membrane of Escherichia coli. SecA binds with high affinity to the membrane-embedded protein-conducting SecYEG complex and serves as both a receptor for secretory proteins and as an ATP-driven molecular motor. Cycles of ATP binding and hydrolysis by SecA drive the progressive movement of the preprotein across the membrane. Surface plasmon resonance allows an online monitoring of protein interactions. Here we report on the kinetic analysis of the interaction between SecA and the membrane-embedded SecYEG complex. Immobilization of membrane vesicles containing overproduced SecYEG on the Biacore Pioneer L1 chip allows the detection of high affinity SecA binding to the SecYEG complex and online monitoring of the translocation of the secretory protein proOmpA. SecA binds tightly to the SecYEG.proOmpA complex and is released only upon ATP hydrolysis. The results provide direct evidence for a model in which SecA cycles at the SecYEG complex during translocation.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Hidrólise , Cinética , Proteínas de Membrana/metabolismo , Ligação Proteica , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA , Ressonância de Plasmônio de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...