Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 520
Filtrar
1.
J Steroid Biochem Mol Biol ; 238: 106461, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38219844

RESUMO

There is growing evidence indicating that mineralocorticoid receptor (MR) expression influences a wide variety of functions in metabolic and immune response. The present study explored if antagonism of the MR reduces neuroinflammation in the spinal cord of mice with experimental autoimmune encephalomyelitis (EAE). Eplerenone (EPLE) (100 mg/kg dissolved in 30% 2-hydroxypropyl-ß-cyclodextrin) was administered intraperitoneally (i.p.) daily from EAE induction (day 0) until sacrificed on day 17 post-induction. The MR blocker (a) significantly decreased the inflammatory parameters TLR4, MYD88, IL-1ß, and iNOS mRNAs; (b) attenuated HMGB1, NLRP3, TGF-ß mRNAs, microglia, and aquaporin4 immunoreaction without modifying GFAP. Serum IL-1ß was also decreased in the EAE+EPLE group. Moreover, EPLE treatment prevented demyelination and improved clinical signs of EAE mice. Interestingly, MR was decreased and GR remained unchanged in EAE mice while EPLE treatment restored MR expression, suggesting that a dysbalanced MR/GR was associated with the development of neuroinflammation. Our results indicated that MR blockage with EPLE attenuated inflammation-related spinal cord pathology in the EAE mouse model of Multiple Sclerosis, supporting a novel therapeutic approach for immune-related diseases.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Eplerenona/farmacologia , Eplerenona/uso terapêutico , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Doenças Neuroinflamatórias , Medula Espinal/patologia , Camundongos Endogâmicos C57BL
2.
Mol Neurobiol ; 61(1): 1-14, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37566177

RESUMO

Glucocorticoids exert antiinflammatory, antiproliferative and immunosupressive effects. Paradoxically they may also enhance inflammation particularly in the nervous system, as shown in Cushing´ syndrome and neurodegenerative disorders of humans and models of human diseases. ."The Wobbler mouse model of amyotrophic lateral sclerosis shows hypercorticoidism and neuroinflammation which subsided by treatment with the glucocorticoid receptor (GR) modulator Dazucorilant (CORT113176). This effect suggests that GR mediates the chronic glucocorticoid unwanted effects. We now tested this hypothesis using a chronic stress model resembling the condition of the Wobbler mouse Male NFR/NFR mice remained as controls or were subjected to a restraining / rotation stress protocol for 3 weeks, with a group of stressed mice receiving CORT113176 also for 3 weeks. We determined the mRNAS or reactive protein for the proinflamatory factors HMGB1, TLR4, NFkB, TNFα, markers of astrogliosis (GFAP, SOX9 and acquaporin 4), of microgliosis (Iba, CD11b, P2RY12 purinergic receptor) as well as serum IL1ß and corticosterone. We showed that chronic stress produced high levels of serum corticosterone and IL1ß, decreased body and spleen weight, produced microgliosis and astrogliosis and increased proinflammatory mediators. In stressed mice, modulation of the GR with CORT113176 reduced Iba + microgliosis, CD11b and P2RY12 mRNAs, immunoreactive HMGB1 + cells, GFAP + astrogliosis, SOX9 and acquaporin expression and TLR4 and NFkB mRNAs vs. stress-only mice. The effects of CORT113176 indicate that glucocorticoids are probably involved in neuroinflammation. Thus, modulation of the GR would become useful to dampen the inflammatory component of neurodegenerative disorders.


Assuntos
Proteína HMGB1 , Isoquinolinas , Doenças Neurodegenerativas , Pirazóis , Masculino , Camundongos , Humanos , Animais , Receptores de Glucocorticoides/metabolismo , Corticosterona , Proteína HMGB1/metabolismo , Doenças Neuroinflamatórias , Gliose/metabolismo , Receptor 4 Toll-Like/metabolismo , Glucocorticoides/farmacologia , Medula Espinal/metabolismo , Doenças Neurodegenerativas/metabolismo
3.
Epidemiol Psychiatr Sci ; 32: e61, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37859501

RESUMO

AIMS: It has been suggested that people with mental disorders have an elevated risk to acquire severe acute respiratory syndrome coronavirus 2 and to be disproportionally affected by coronavirus disease 19 (COVID-19) once infected. We aimed to analyse the COVID-19 infection rate, course and outcome, including mortality and long COVID, in people with anxiety, depressive, neurodevelopmental, schizophrenia spectrum and substance use disorders relative to control subjects without these disorders. METHODS: This study constitutes a preregistered systematic review and random-effects frequentist and Bayesian meta-analyses. Major databases were searched up until 27 June 2023. RESULTS: Eighty-one original articles were included reporting 304 cross-sectional and prospective effect size estimates (median n per effect-size = 114837) regarding associations of interest. Infection risk was not significantly increased for any mental disorder that we investigated relative to samples of people without these disorders. The course of COVID-19, however, is relatively severe, and long COVID and COVID-19-related hospitalization are more likely in all patient samples that we investigated. The odds of dying from COVID-19 were high in people with most types of mental disorders, except for those with anxiety and neurodevelopmental disorders relative to non-patient samples (pooled ORs range, 1.26-2.57). Bayesian analyses confirmed the findings from the frequentist approach and complemented them with estimates of the strength of evidence. CONCLUSIONS: Once infected, people with pre-existing mental disorders are at an elevated risk for a severe COVID-19 course and outcome, including long COVID and mortality, relative to people without pre-existing mental disorders, despite an infection risk not significantly increased.


Assuntos
COVID-19 , Transtornos Mentais , Humanos , COVID-19/epidemiologia , Estudos Prospectivos , Síndrome de COVID-19 Pós-Aguda , Teorema de Bayes , Estudos Transversais , Transtornos Mentais/epidemiologia
4.
Mol Psychiatry ; 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599967

RESUMO

In concert with neuropeptides and transmitters, the end products of the hypothalamus-pituitary-adrenal (HPA) axis, the glucocorticoid hormones cortisol and corticosterone (CORT), promote resilience: i.e., the ability to cope with threats, adversity, and trauma. To exert this protective action, CORT activates mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) that operate in a complementary manner -as an on/off switch- to coordinate circadian events, stress-coping, and adaptation. The evolutionary older limbic MR facilitates contextual memory retrieval and supports an on-switch in the selection of stress-coping styles at a low cost. The rise in circulating CORT concentration after stress subsequently activates a GR-mediated off-switch underlying recovery of homeostasis by providing the energy for restraining the primary stress reactions and promoting cognitive control over emotional reactivity. GR activation facilitates contextual memory storage of the experience to enable future stress-coping. Such complementary MR-GR-mediated actions involve rapid non-genomic and slower gene-mediated mechanisms; they are time-dependent, conditional, and sexually dimorphic, and depend on genetic background and prior experience. If coping fails, GR activation impairs cognitive control and promotes emotional arousal which eventually may compromise resilience. Such breakdown of resilience involves a transition to a chronic stress construct, where information processing is crashed; it leads to an imbalanced MR-GR switch and hence increased vulnerability. Novel MR-GR modulators are becoming available that may reset a dysregulated stress response system to reinstate the cognitive flexibility required for resilience.

5.
Dev Psychopathol ; 35(3): 1296-1307, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-34911592

RESUMO

Childhood anxiety disorders (CAD) are a common childhood mental disorder and understanding early developmental pathways is key to prevention and early intervention. What is not understood is whether early life stress predictors of CAD might be both mediated by infant cortisol reactivity and moderated by infant attachment status. To address this question, this exploratory study draws on 190 women recruited in early pregnancy and followed together with their children until 4 years of age. Early life stress is operationalized as maternal depression measured using the Structured Clinical Interview for the DSM, Childhood Trauma Questionnaire, Parenting Stress Index, and antenatal maternal hair cortisol concentrations. Infant cortisol reactivity was measured at 12 months together with the Strange Situation Procedure and CAD assessed at 4 years of age using the Preschool Age Psychiatric Assessment. There was no direct association between attachment classification and CAD. Furthermore, infant cortisol reactivity neither mediated nor attachment moderated the association of early life stress predictors and CAD. However, only for infants with organized attachment classifications, higher maternal antenatal depression, and hair cortisol were associated with a higher risk of CAD.


Assuntos
Depressão , Hidrocortisona , Lactente , Criança , Feminino , Humanos , Gravidez , Pré-Escolar , Depressão/metabolismo , Hidrocortisona/metabolismo , Estresse Psicológico/complicações , Transtornos de Ansiedade , Poder Familiar
6.
Science ; 377(6601): 27-28, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35771905

RESUMO

Social defeat activates midbrain cells, promoting sleep and reducing anxiety in mice.


Assuntos
Ansiedade , Mesencéfalo , Sono , Derrota Social , Estresse Psicológico , Animais , Ansiedade/fisiopatologia , Mesencéfalo/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Psicológico/fisiopatologia
7.
Neurobiol Stress ; 18: 100455, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35601687

RESUMO

'You can't roll the clock back and reverse the effects of experiences' Bruce McEwen used to say when explaining how allostasis labels the adaptive process. Here we will for once roll the clock back to the times that the science of the glucocorticoid hormone was honored with a Nobel prize and highlight the discovery of their receptors in the hippocampus as inroad to its current status as master regulator in control of stress coping and adaptation. Glucocorticoids operate in concert with numerous neurotransmitters, neuropeptides, and other hormones with the aim to facilitate processing of information in the neurocircuitry of stress, from anticipation and perception of a novel experience to behavioral adaptation and memory storage. This action, exerted by the glucocorticoids, is guided by two complementary receptor systems, mineralocorticoid receptors (MR) and glucocorticoid receptors (GR), that need to be balanced for a healthy stress response pattern. Here we discuss the cellular, neuroendocrine, and behavioral studies underlying the MR:GR balance concept, highlight the relevance of hypothalamic-pituitary-adrenal (HPA) -axis patterns and note the limited understanding yet of sexual dimorphism in glucocorticoid actions. We conclude with the prospect that (i) genetically and epigenetically regulated receptor variants dictate cell-type-specific transcriptome signatures of stress-related neuropsychiatric symptoms and (ii) selective receptor modulators are becoming available for more targeted treatment. These two new developments may help to 'restart the clock' with the prospect to support resilience.

8.
Psychoneuroendocrinology ; 141: 105764, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35462201

RESUMO

In examining maternal depression, placental 11ß-HSD2 mRNA expression and offspring cortisol regulation as a potential fetal programming pathway in relation to later child emotional disorders, it has become clear that sex differences may be important to consider. This study reports on data obtained from 209 participants in the Mercy Pregnancy and Emotional Wellbeing Study (MPEWS) recruited before 20 weeks of pregnancy. Maternal depressive disorders were diagnosed using the SCID-IV and maternal childhood trauma using the Childhood Trauma Questionnaire. Placental 11ß-HSD2 mRNA was measured using qRT-PCR. For assessment of stress-induced cortisol reactivity, salivary cortisol samples were taken at 12 months of age. At 4 years of age, measurement of Childhood Emotional Disorders (depression and anxiety) was based on maternal report using the Preschool Age Psychiatric Assessment (PAPA) and internalizing symptoms using the Child Behavior Checklist (CBCL). Maternal depression in pregnancy and postpartum, and infant cortisol reactivity, was associated with internalizing symptoms for females only. For female offspring only, increased 12-month cortisol reactivity was also associated with increased emotional disorders at 4 years of age; however, there was no association with placental 11ß-HSD2 mRNA expression. In females only, the combination of lower placental 11ß-HSD2 mRNA expression and higher cortisol reactivity at 12 months of age predicted increased internalising problems. These findings suggest there may be sex differences in prenatal predictors and pathways for early childhood depression and anxiety symptoms and disorder.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Hidrocortisona , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Criança , Pré-Escolar , Feminino , Desenvolvimento Fetal/fisiologia , Humanos , Hidrocortisona/metabolismo , Lactente , Masculino , Placenta/metabolismo , Gravidez , RNA Mensageiro/metabolismo , Caracteres Sexuais
9.
J Psychiatr Res ; 148: 258-263, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35151217

RESUMO

In the present study we measured the concentrations of cortisol, thyroid hormones, testosterone, and GABA (gamma aminobutyric acid) in am blood plasma samples of combatants with an at least 10 year history of military psychological trauma (N = 74) divided in groups that either suffer from post-traumatic stress disorder (PTSD) (N = 37) or are resistant (N = 37) as well as in a control group without traumatic experience in the anamnesis, (N = 34). PTSD symptoms were assessed using the Clinician-Administered PTSD Scale (CAPS). The results show that the am blood cortisol levels of individuals that were exposed to war zone experiences irrespective susceptibility for or resistance to PTSD were significantly higher than the values observed in the controls. Testosterone levels in PTSD patients differed neither from that observed in PTSD resistant nor control groups. In the resistant group testosterone levels were however significantly higher than in controls. The level of all thyroid hormones did not differ between the study groups. GABA level was significantly lower in the PTSD group compared with healthy controls. In the resistant group blood GABA levels were not significantly different from either PTSD patients or controls. In conclusion, the current data show that cortisol and to some extent testosterone may serve as biomarker of war zone stress per se, even if trauma was experienced at least ten years before, rather than of only PTSD or resistance to PTSD. GABA, in contrast, can be considered a potential marker of the protracted nature of PTSD.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Veteranos , Biomarcadores , Suscetibilidade a Doenças , Humanos , Hidrocortisona , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Testosterona , Hormônios Tireóideos , Veteranos/psicologia , Ácido gama-Aminobutírico
10.
Eur J Neurosci ; 55(9-10): 2813-2831, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33548153

RESUMO

The acquired immobility response during the "forced swim test (FST)" is not a rodent model of depression, but the test has some validity in predicting a compound's antidepressant potential. Nevertheless, 60% of the about 600 papers that were published annually the past 2 years label the rodent's immobility response as depression-like behaviour, but the relative contribution per country is changing. When the Editors-in-Chief of 5 journals publishing most FST papers were asked for their point of view on labelling immobility as depression-like behaviour and despair, they responded that they primarily rely on the reviewers regarding scientific merit of the submission. One Editor informs authors of the recent NIMH notice (https://grants.nih.gov/grants/guide/notice-files/NOT-MH-19-053.html) which encourages investigators to use animal models "for" addressing neurobiological questions rather than as model "of" specific mental disorders. The neurobiological questions raised by use of the FST fall in two categories. First, research on the role of endocrine and metabolic factors, with roots in the 1980s, and with focus on the bottom-up action of glucocorticoids on circuits processing salient information, executive control and memory consolidation. Second, recent findings using novel technological and computational advances that have allowed great progress in charting top-down control in the switch from active to passive coping with the inescapable stressor executed by neuronal ensembles of the medial prefrontal cortex via the peri-aquaductal grey. It is expected that combining neural top-down and endocrine bottom-up approaches will provide new insights in the role of stress-coping and adaptation in pathogenesis of mental disorders.


Assuntos
Depressão , Estresse Psicológico , Adaptação Psicológica , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Humanos , Estresse Psicológico/metabolismo , Natação
11.
Psychoneuroendocrinology ; 127: 105197, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33743501

RESUMO

Placental 11ß-HSD2 has been a focus of research for understanding potential fetal programming associated with maternal emotional disorders. This study examined the pathway from antenatal mental health via placental 11ß-HSD2 mRNA to cortisol regulation in the infant offspring. This study reports on data obtained from 236 participants in the Mercy Pregnancy and Emotional Wellbeing Study (MPEWS). At term, placental tissue was collected within 30 min of birth from 52 participants meeting current criteria for a depressive disorder, and 184 control participants. Depressive disorders were diagnosed using the SCID-IV. In addition, antidepressant use, depressive and anxiety symptoms were measured in early and late pregnancy. Placental 11ß-HSD2 mRNA expression was measured using qRT-PCR. Infant salivary cortisol samples were taken at 12 months of age. Women on antidepressant medication and with higher trait anxiety had higher placental 11ß-HSD2 expression compared to women not taking medication. Furthermore, the offspring of women taking an antidepressant and who also had a current depressive disorder and high trait anxiety had high cortisol reactivity at 12 months of age and this was mediated through 11ß-HSD2 mRNA expression. In contrast, offspring of women not taking antidepressant medication with depressive disorder and high anxiety there was low cortisol reactivity observed. Our findings suggest that the relationship between maternal antenatal depression and anxiety and infant cortisol reactivity is mediated through placental 11ß-HSD2 mRNA expression. Furthermore, the direction differed for women taking antidepressants, where infant cortisol reactivity was high whereas when compared to those with unmedicated depression and anxiety, where infant cortisol reactivity was low.


Assuntos
Ansiedade , Depressão , Desenvolvimento Fetal , Hidrocortisona , Saúde Materna , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Antidepressivos/uso terapêutico , Ansiedade/tratamento farmacológico , Depressão/tratamento farmacológico , Feminino , Desenvolvimento Fetal/fisiologia , Humanos , Hidrocortisona/fisiologia , Placenta/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal , RNA Mensageiro/metabolismo
12.
Sci Rep ; 10(1): 18308, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110158

RESUMO

Mitochondrial dysfunction was highlighted as a crucial vulnerability factor for the development of depression. However, systemic studies assessing stress-induced changes in mitochondria-associated genes in brain regions relevant to depression symptomatology remain scarce. Here, we performed a genome-wide transcriptomic study to examine mitochondrial gene expression in the prefrontal cortex (PFC) and nucleus accumbens (NAc) of mice exposed to multimodal chronic restraint stress. We identified mitochondria-associated gene pathways as most prominently affected in the PFC and with lesser significance in the NAc. A more detailed mitochondrial gene expression analysis revealed that in particular mitochondrial DNA-encoded subunits of the oxidative phosphorylation complexes were altered in the PFC. The comparison of our data with a reanalyzed transcriptome data set of chronic variable stress mice and major depression disorder subjects showed that the changes in mitochondrial DNA-encoded genes are a feature generalizing to other chronic stress-protocols as well and might have translational relevance. Finally, we provide evidence for changes in mitochondrial outputs in the PFC following chronic stress that are indicative of mitochondrial dysfunction. Collectively, our work reinforces the idea that changes in mitochondrial gene expression are key players in the prefrontal adaptations observed in individuals with high behavioral susceptibility and resilience to chronic stress.


Assuntos
Suscetibilidade a Doenças/metabolismo , Mitocôndrias/metabolismo , Córtex Pré-Frontal/metabolismo , Estresse Psicológico/metabolismo , Animais , Perfilação da Expressão Gênica , Hormônio Liberador de Gonadotropina/análogos & derivados , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Resiliência Psicológica , Transcriptoma/fisiologia
13.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244957

RESUMO

Glucocorticoids are crucial for stress-coping, resilience, and adaptation. However, if the stress hormones become dysregulated, the vulnerability to stress-related diseases is enhanced. In this brief review, we discuss the role of glucocorticoids in the pathogenesis of neurodegenerative disorders in both human and animal models, and focus in particular on amyotrophic lateral sclerosis (ALS). For this purpose, we used the Wobbler animal model, which mimics much of the pathology of ALS including a dysfunctional hypothalamic-pituitary-adrenal axis. We discuss recent studies that demonstrated that the pathological cascade characteristic for motoneuron degeneration of ALS is mimicked in the genetically selected Wobbler mouse and can be attenuated by treatment with the selective glucocorticoid receptor antagonist (GRA) CORT113176. In long-term treatment (3 weeks) GRA attenuated progression of the behavioral, inflammatory, excitatory, and cell-death-signaling pathways while increasing the survival signal of serine-threonine kinase (pAkt). The action mechanism of the GRA may be either by interfering with GR deactivation or by restoring the balance between pro- and anti-inflammatory signaling pathways driven by the complementary mineralocorticoid receptor (MR)- and GR-mediated actions of corticosterone. Accordingly, GR antagonism may have clinical relevance for the treatment of neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Receptores de Glucocorticoides/metabolismo , Animais , Corticosterona/sangue , Corticosterona/química , Modelos Animais de Doenças , Humanos , Inflamação/sangue , Inflamação/complicações , Modelos Biológicos , Doenças Neurodegenerativas/sangue , Receptores de Glucocorticoides/antagonistas & inibidores
14.
Neurosci Biobehav Rev ; 108: 48-77, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31666179

RESUMO

The ventral tegmental area dopamine (VTA-DA) mesolimbic circuit processes emotional, motivational, and social reward associations together with their more demanding cognitive aspects that involve the mesocortical circuitry. Coping with stress increases VTA-DA excitability, but when the stressor becomes chronic the VTA-DA circuit is less active, which may lead to degeneration and local microglial activation. This switch between activation and inhibition of VTA-DA neurons is modulated by e.g. corticotropin-releasing hormone (CRH), opioids, brain-derived neurotrophic factor (BDNF), and the adrenal glucocorticoids. These actions are coordinated with energy-demanding stress-coping styles to promote behavioral adaptation. The VTA circuits show sexual dimorphism that is programmed by sex hormones during perinatal life in a manner that can be affected by glucocorticoid exposure. We conclude that insight in the role of stress in VTA-DA plasticity and connectivity, during reward processing and stress-coping, will be helpful to better understand the mechanism of resilience to breakdown of adaptation.


Assuntos
Adaptação Psicológica , Neurônios Dopaminérgicos , Rede Nervosa , Plasticidade Neuronal , Córtex Pré-Frontal , Caracteres Sexuais , Estresse Psicológico , Área Tegmentar Ventral , Adaptação Psicológica/fisiologia , Animais , Neurônios Dopaminérgicos/metabolismo , Humanos , Rede Nervosa/metabolismo , Rede Nervosa/fisiopatologia , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/fisiopatologia
15.
Brain Res ; 1727: 146551, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31726042

RESUMO

The Wobbler mouse spinal cord shows vacuolated motoneurons, glial reaction, inflammation and abnormal glutamatergic parameters. Wobblers also show deficits of motor performance. These conditions resemble amyotrophic lateral sclerosis (ALS). Wobbler mice also show high levels of corticosterone in blood, adrenals and brain plus adrenal hypertrophy, suggesting that chronically elevated glucocorticoids prime spinal cord neuroinflammation. Therefore, we analyzed if treatment of Wobbler mice with the glucocorticoid receptor (GR) antagonist CORT113176 mitigated the mentioned abnormalities. 30 mg/kg CORT113176 given daily for 3 weeks reduced motoneuron vacuolation, decreased astro and microgliosis, lowered the inflammatory mediators high mobility group box 1 protein (HMGB1), toll-like receptor 4, myeloid differentiation primary response 88 (MyD88), p50 subunit of nuclear factor kappa B (NFκB), tumor necrosis factor (TNF) receptor, and interleukin 18 (IL18) compared to untreated Wobblers. CORT113176 increased the survival signal pAKT (serine-threonine kinase) and decreased the death signal phosphorylated Junk-N-terminal kinase (pJNK), symptomatic of antiapoptosis. There was a moderate positive effect on glutamine synthase and astrocyte glutamate transporters, suggesting decreased glutamate excitotoxicity. In this pre-clinical study, Wobblers receiving CORT113176 showed enhanced resistance to fatigue in the rota rod test and lower forelimb atrophy at weeks 2-3. Therefore, long-term treatment with CORT113176 attenuated degeneration and inflammation, increased motor performance and decreased paw deformity. Antagonism of the GR may be of potential therapeutic value for neurodegenerative diseases.


Assuntos
Isoquinolinas/administração & dosagem , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Pirazóis/administração & dosagem , Receptores de Glucocorticoides/antagonistas & inibidores , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Encefalite/patologia , Feminino , Ácido Glutâmico/toxicidade , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/patologia
16.
Behav Brain Res ; 364: 1-10, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30738104

RESUMO

The forced swim test (FST) for rodents does not model despair or helplessness. It also is not a read-out for depression, anxiety, psychomotor retardation or autism, because these are anthropomorphic interpretations of the rodent's acquired immobility. Rather, the transition from swimming to immobility allows to examine the mechanistic underpinning of coping with inescapable stressors. However, in a recent detailed analysis of the FST application over the past 40 years, we noted a dramatic surge in the use of this test to phenotype animals as 'depressed'. As a follow up to that report, we now present an analysis of the use of the FST over the past three years. This literature analysis shows that the popularity of the FST is still increasing and that the majority of researchers qualifies the rodent's floating response as depressive-like behavior. However, over the past few years we also note a trend to interpret immobility rather as the expression of a coping strategy. In view of this result, we have sent a poll to the relevant authors to learn how consistent they are in naming FST behavior. Remarkably, we find a dramatic inverse correlation between their first qualification of acquired immobility as depressive-like behavior towards their current interpretation as coping strategy. In this contribution we have embedded our literature analysis and poll results in an update on the management of coping with inescapable stressors by processing in prefrontal cortical circuitry and glucocorticoid feedback.


Assuntos
Modelos Animais de Doenças , Estresse Fisiológico/fisiologia , Estresse Psicológico/metabolismo , Adaptação Psicológica , Animais , Ansiedade , Transtornos de Ansiedade , Comportamento Animal/fisiologia , Depressão , Transtorno Depressivo , Aprendizagem , Córtex Pré-Frontal , Natação
17.
Cell Mol Neurobiol ; 39(4): 503-522, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30173378

RESUMO

Psychotic depression is characterized by elevated circulating cortisol, and high daily doses of the glucocorticoid/progesterone antagonist mifepristone for 1 week are required for significant improvement. Using a rodent model, we find that such high doses of mifepristone are needed because the antagonist is rapidly degraded and poorly penetrates the blood-brain barrier, but seems to facilitate the entry of cortisol. We also report that in male C57BL/6J mice, after a 7-day treatment with a high dose of mifepristone, basal blood corticosterone levels were similar to that of vehicle controls. This is surprising because after the first mifepristone challenge, corticosterone remained elevated for about 16 h, and then decreased towards vehicle control levels at 24 h. At that time, stress-induced corticosterone levels of the 1xMIF were sevenfold higher than the 7xMIF group, the latter response being twofold lower than controls. The 1xMIF mice showed behavioral hyperactivity during exploration of the circular hole board, while the 7xMIF mice rather engaged in serial search patterns. To explain this rapid reset of corticosterone secretion upon recurrent mifepristone administration, we suggest the following: (i) A rebound glucocorticoid feedback after cessation of mifepristone treatment. (ii) Glucocorticoid agonism in transrepression and recruitment of cell-specific coregulator cocktails. (iii) A more prominent role of brain MR function in control of stress circuit activity. An overview table of neuroendocrine MIF effects is provided. The data are of interest for understanding the mechanistic underpinning of stress system reset as treatment strategy for stress-related diseases.


Assuntos
Mifepristona/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Corticosterona/sangue , Corticosterona/metabolismo , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Humanos , Hidrocortisona/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mifepristona/administração & dosagem , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo
18.
Psychoneuroendocrinology ; 105: 79-85, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30292651

RESUMO

Recently, the "conceptual endophenotype" approach has been proposed as a means to identify subgroups of patients affected by stress-related psychiatric disorders. Conceptual endophenotypes consist of patterns of psychological, biological, and symptomatic elements. We studied a sample of patients seeking help for psychosomatic and stress-related disorders (total N = 469), who were evaluated with a diagnostic instrument that integrates psychological and biological data to derive 13 endophenotypes, or Neuropattern. The goal of this study was to explore associations between common variations of the mineralocorticoid receptor gene (MR, NR3C2), and the 13 conceptual endophenotypes of Neuropattern, as well as with the respective biological and symptom measures. A common haplotype of the MR, comprised of two functional single nucleotide polymorphism (rs2070951 G/C & rs5522 A/G), was associated with the conceptual endophenotype CRF-hypoactivity, characterized by low cortisol levels at awakening and a symptom constellation often observed in atypical depression. Homozygous carriers of the G-A haplotype (haplotype 1), previously associated with reduced dispositional optimism, increased levels of rumination and higher risk for depression, more frequently endorsed this Neuropattern. In addition to the overall association between MR variation and CRF hypoactivity, we observed in the whole sample significant associations between MR haplotypes and cortisol awakening response patterns, as well as with symptoms that characterize the CRF hypoactivity endophenotype. If replicated, MR haplotype 1 might serve as a vulnerability marker for a disorder class characterized in biological terms by reduced cortisol levels, and in terms of symptom constellation by features often observed in atypical depression.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Transtorno Depressivo , Endofenótipos , Hidrocortisona/metabolismo , Receptores de Mineralocorticoides/genética , Adolescente , Adulto , Idoso , Transtorno Depressivo/diagnóstico , Transtorno Depressivo/genética , Transtorno Depressivo/metabolismo , Transtorno Depressivo/fisiopatologia , Feminino , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
Neuroscience ; 384: 384-396, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29890290

RESUMO

Wobbler mice are experimental models for amyotrophic lateral sclerosis. As such they show motoneuron degeneration, motor deficits, and astrogliosis and microgliosis of the spinal cord. Additionally, Wobbler mice show increased plasma, spinal cord and brain corticosterone levels and focal adrenocortical hyperplasia, suggesting a pathogenic role for glucocorticoids in this disorder. Considering this endocrine background, we examined whether the glucocorticoid receptor (GR) modulator CORT 113176 prevents spinal cord neuropathology of Wobblers. CORT 113176 shows high affinity for the GR, with low or null affinity for other steroid receptors. We employed five-month-old genotyped Wobbler mice that received s.c. vehicle or 30 mg/kg/day for 4 days of CORT 113176 dissolved in sesame oil. The mice were used on the 4th day, 2 h after the last dose of CORT 113176. Vehicle-treated Wobbler mice presented vacuolated motoneurons, increased glial fibrillary acidic protein (GFAP)+ astrocytes and decreased glutamine synthase (GS)+ cells. There was strong neuroinflammation, shown by increased staining for IBA1+ microglia and CD11b mRNA, enhanced expression of tumor necrosis factor-α, its cognate receptor TNFR1, toll-like receptor 4, the inducible nitric oxide synthase, NFkB and the high-mobility group box 1 protein (HMGB1). Treatment of Wobbler mice with CORT 113176 reversed the abnormalities of motoneurons and down-regulated proinflammatory mediators and glial reactivity. Expression of glutamate transporters GLT1 and GLAST mRNAs and GLT1 protein was significantly enhanced over untreated Wobblers. In summary, antagonism of GR with CORT 113176 prevented neuropathology and showed anti-inflammatory and anti-glutamatergic effects in the spinal cord of Wobbler mice.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Inflamação/tratamento farmacológico , Isoquinolinas/uso terapêutico , Degeneração Neural/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Pirazóis/uso terapêutico , Receptores de Glucocorticoides/antagonistas & inibidores , Medula Espinal/efeitos dos fármacos , Esclerose Lateral Amiotrófica/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Isoquinolinas/farmacologia , Camundongos , Camundongos Mutantes Neurológicos , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Fármacos Neuroprotetores/farmacologia , Pirazóis/farmacologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Resultado do Tratamento
20.
Front Neuroendocrinol ; 49: 124-145, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29428549

RESUMO

Bruce McEwen's discovery of receptors for corticosterone in the rat hippocampus introduced higher brain circuits in the neuroendocrinology of stress. Subsequently, these receptors were identified as mineralocorticoid receptors (MRs) that are involved in appraisal processes, choice of coping style, encoding and retrieval. The MR-mediated actions on cognition are complemented by slower actions via glucocorticoid receptors (GRs) on contextualization, rationalization and memory storage of the experience. These sequential phases in cognitive performance depend on synaptic metaplasticity that is regulated by coordinate MR- and GR activation. The receptor activation includes recruitment of coregulators and transcription factors as determinants of context-dependent specificity in steroid action; they can be modulated by genetic variation and (early) experience. Interestingly, inflammatory responses to damage seem to be governed by a similarly balanced MR:GR-mediated action as the initiating, terminating and priming mechanisms involved in stress-adaptation. We conclude with five questions challenging the MR:GR balance hypothesis.


Assuntos
Tonsila do Cerebelo/metabolismo , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Inflamação/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Estresse Psicológico/metabolismo , Animais , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Estresse Psicológico/complicações , Estresse Psicológico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...