Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 39(1): 2377586, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39037009

RESUMO

Species of Leishmania and Trypanosoma genera are the causative agents of relevant parasitic diseases. Survival inside their hosts requires the existence of a potent antioxidant enzymatic machinery. Four iron superoxide dismutases have been described in trypanosomatids (FeSODA, FeSODB1, FeSODB2, and FeSODC) that hold a potential as therapeutic targets. Nonetheless, very few studies have been developed that make use of the purified enzymes. Moreover, FeSODC remains uncharacterised in Leishmania. In this work, for the first time, we describe the purification and enzymatic activity of recombinant versions of the four Leishmania FeSOD isoforms and establish an improved strategy for developing inhibitors. We propose a novel parameter [(V*cyt. c - Vcyt. c)/Vcyt. c] which, in contrast to that used in the classical cytochrome c reduction assay, correlates linearly with enzyme concentration. As a proof of concept, we determine the IC50 values of two ruthenium carbosilane metallodendrimers against these isoforms.


Assuntos
Antiprotozoários , Relação Dose-Resposta a Droga , Leishmania infantum , Testes de Sensibilidade Parasitária , Superóxido Dismutase , Leishmania infantum/enzimologia , Leishmania infantum/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Superóxido Dismutase/metabolismo , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/química , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia
2.
Int J Pharm ; 658: 124199, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38703928

RESUMO

Dendrimers have emerged as an important group of nanoparticles to transport drugs, DNA, or RNA into target cells in cancer and other diseases. Various functional modifications can be imposed on dendrimers to increase the efficacy and specificity in delivering their cargo to the target cells and decrease their toxicity. In the present work, we evaluated the potential of carbosilane polyphenolic dendrimers modified with caffeic acid (CA) and polyethylene glycol (PEG) to deliver proapoptotic Mcl-1 and Bcl-2 siRNAs to A549 cancer cells. Dendrimers formed stable complexes with siRNAs as assessed by transmission electron microscopy and gel electrophoresis. Modification of dendrimers with PEG reduced the size and the zeta potential of dendrimer/siRNA complexes. The presence of PEG caused a red shift of the CD spectrum, and this effect was the more pronounced, the higher the dendrimer/siRNA ratio was. The nanocomplexes were internalized by A549. All studied dendrimer/siRNA formulations inhibited tumor cell migration and adhesion and caused an increase in the population of early apoptotic cells. Among four tested dendrimers, the polyphenolic compound containing two caffeic acid moieties complexed with siRNA demonstrated the lowest polydispersity index and showed an excellent transfection profile. In conclusion, this dendrimer are a promising candidate for the delivery of siRNA into cancer cells in further in vivo studies.


Assuntos
Apoptose , Dendrímeros , Polietilenoglicóis , Polifenóis , RNA Interferente Pequeno , Humanos , Dendrímeros/química , Dendrímeros/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Células A549 , Apoptose/efeitos dos fármacos , Polifenóis/química , Polifenóis/farmacologia , Polifenóis/administração & dosagem , Polietilenoglicóis/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/administração & dosagem , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Movimento Celular/efeitos dos fármacos , Portadores de Fármacos/química , Silanos/química , Transfecção/métodos , Linhagem Celular Tumoral
3.
Pharmaceutics ; 16(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38675156

RESUMO

Dendritic hydrogels based on carbosilane crosslinkers are promising drug delivery systems, as their amphiphilic nature improves the compatibility with poorly water-soluble drugs. In this work, we explored the impact of the complementary polymer on the amphiphilic properties of the dendritic network. Different polymers were selected as precursors, from the highly lipophilic propylene glycol (PPG) to the hydrophilic polyethylene glycol (PEG), including amphiphilic Pluronics L31, L35 and L61. The dithiol polymers reacted with carbosilane crosslinkers through UV-initiated thiol-ene coupling (TEC), and the resultant materials were classified as non-swelling networks (for PPG, PLUL31 and PLUL61) and high-swelling hydrogels (for PEG and PLUL35). The hydrogels exhibited thermo-responsive properties, shrinking at higher temperatures, and exhibited an intriguing drug release pattern due to internal nanostructuring. Furthermore, we fine-tuned the dendritic crosslinker, including hydroxyl and azide pendant groups in the focal point, generating functional networks that can be modified through degradable (ester) and non-degradable (triazol) bonds. Overall, this work highlighted the crucial role of the amphiphilic balance in the design of dendritic hydrogels with thermo-responsive behavior and confirmed their potential as functional networks for biomedical applications.

4.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612821

RESUMO

Antibiotic resistance is currently a global health emergency. Metallodrugs, especially metal coordination complexes, comprise a broad variety of candidates to combat antibacterial infections. In this work, we designed a new family of Schiff base zinc(II) complexes with iminopyridine as an organic ligand and different inorganic ligands: chloride, nitrate, and acetate. The antibacterial effect of the Zn(II) complexes was studied against planktonic bacterial cells of Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) strains. The results showed a moderate biocide activity in both types of planktonic bacteria, which arises from the metal complexation to the Schiff base ligand. Importantly, we confirmed the crucial effect of the metal, with Zn(II) improving the activity of Cu(II) counterparts previously reported. On the other hand, the impact of the inorganic ligands was not significant for the antibacterial effect but was relevant for the complex solubility. Finally, as proof of concept of topical antibacterial formulation, we formulated an emulsion containing the most lipophilic Zn(II) complex and confirmed a sustained release for 24 h in a vertical cell diffusion assay. The promising activity of iminopyridine Zn(II) complexes is potentially worth exploring in more detailed studies.


Assuntos
Complexos de Coordenação , Zinco , Zinco/farmacologia , Ligantes , Bases de Schiff/farmacologia , Nitratos , Complexos de Coordenação/farmacologia , Antibacterianos/farmacologia , Escherichia coli , Plâncton
5.
Sci Rep ; 14(1): 5946, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467715

RESUMO

The use of dendrimers as drug and nucleic acid delivery systems requires knowledge of their interactions with objects on their way to the target. In the present work, we investigated the interaction of a new class of carbosilane dendrimers functionalized with polyphenolic and caffeic acid residues with human serum albumin, which is the most abundant blood protein. The addition of dendrimers to albumin solution decreased the zeta potential of albumin/dendrimer complexes as compared to free albumin, increased density of the fibrillary form of albumin, shifted fluorescence spectrum towards longer wavelengths, induced quenching of tryptophan fluorescence, and decreased ellipticity of circular dichroism resulting from a reduction in the albumin α-helix for random coil structural form. Isothermal titration calorimetry showed that, on average, one molecule of albumin was bound by 6-10 molecules of dendrimers. The zeta size confirmed the binding of the dendrimers to albumin. The interaction of dendrimers and albumin depended on the number of caffeic acid residues and polyethylene glycol modifications in the dendrimer structure. In conclusion, carbosilane polyphenolic dendrimers interact with human albumin changing its structure and electrical properties. However, the consequences of such interaction for the efficacy and side effects of these dendrimers as drug/nucleic acid delivery system requires further research.


Assuntos
Ácidos Cafeicos , Dendrímeros , Ácidos Nucleicos , Humanos , Albumina Sérica Humana/metabolismo , Dendrímeros/química , Silanos/química
6.
Chem Mater ; 36(1): 266-274, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222939

RESUMO

The emergence of antibiotic resistance is a serious global health problem. There is an incessant demand for new antimicrobial drugs and materials that can address this global issue from different angles. Dendritic hydrogels have appeared as a promising strategy. A family of bifunctional amphiphilic carbosilane dendrimers was designed and employed as nanosized cross-linking points for the synthesis of high-swelling hydrogels using the highly efficient Thiol-Ene click reaction for their preparation. Both stoichiometric and off-stoichiometric conditions were studied, generating hydrogels with pendant hydroxyl or alkene moieties. These hydrogels were found to be tunable antibacterial materials. They can easily be postmodified with relevant antibiotic moieties through covalent attachment on the hydroxyl or alkene pendant groups, generating ammonium-decorated networks with temperature and pH-responsive properties. Additionally, they can efficiently encapsulate drugs with poor solubility in water, like ciprofloxacin, and perform a sustained release over time, as demonstrated in preliminary assays against Staphylococcus aureus.

7.
Front Cell Infect Microbiol ; 13: 1203991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886663

RESUMO

Introduction: Antimicrobial Resistance is a serious public health problem, which is aggravated by the ability of the microorganisms to form biofilms. Therefore, new therapeutic strategies need to be found, one of them being the use of cationic dendritic systems (dendrimers and dendrons). Methods: The aim of this study is to analyze the in vitro antimicrobial efficacy of six cationic carbosilane (CBS) dendrimers and one dendron with peripheral ammonium groups against multidrug-resistant bacteria, some of them isolated hospital strains, and their biofilms. For this purpose, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC) and minimum eradication biofilm concentration (MBEC) studies were carried out. In addition, the cytotoxicity on Hela cells of those compounds that proved to be the most effective was analyzed. Results: All the tested compounds showed in vitro activity against the planktonic forms of methicillin-resistant Staphylococcus aureus and only the dendrimers BDSQ017, BDAC-001 and BDLS-001 and the dendron BDEF-130 against their biofilms. On the other hand, only the dendrimers BDAC 001, BDLS-001 and BDJS-049 and the dendron BDEF-130 were antibacterial in vitro against the planktonic forms of multidrug-resistant Pseudomonas aeruginosa, but they lacked activity against their preformed biofilms. In addition, the dendrimers BDAC-001, BDLS-001 and BDSQ-017 and the dendron BDEF-130 exhibited a good profile of cytotoxicity in vitro. Discussion: Our study demonstrates the possibility of using the four compounds mentioned above as possible topical antimicrobials against the clinical and reference strains of multidrug-resistant bacteria.


Assuntos
Anti-Infecciosos , Dendrímeros , Staphylococcus aureus Resistente à Meticilina , Humanos , Dendrímeros/farmacologia , Células HeLa , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
8.
Nanomedicine ; 53: 102703, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37591367

RESUMO

Carbosilane metallodendrimers, based on the arene Ru(II) complex (CRD13) and integrated to imino-pyridine surface groups have been investigated as an anticancer agent in a mouse model with triple-negative breast cancer. The dendrimer entered into the cells efficiently, and exhibited selective toxicity for 4T1 cells. In vivo investigations proved that a local injection of CRD13 caused a reduction of tumour mass and was non-toxic. ICP analyses indicated that Ru(II) accumulated in all tested tissues with a greater content detected in the tumour.


Assuntos
Antineoplásicos , Rutênio , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Rutênio/farmacologia , Rutênio/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
9.
Colloids Surf B Biointerfaces ; 227: 113371, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37244201

RESUMO

One of the major limitations for the treatment of many diseases is an inability of drugs to cross the cell membrane barrier. Different kinds of carriers are being investigated to improve drug bioavailability. Among them, lipid or polymer-based systems are of special interest due to their biocompatibility. In our study, we combined dendritic and liposomal carriers and analysed the biochemical and biophysical properties of these formulations. Two preparation methods of Liposomal Locked-in Dendrimers (LLDs) systems have been established and compared. Carbosilane ruthenium metallodendrimer was complexed with an anti-cancer drug (doxorubicin) and locked in a liposomal structure, using both techniques. The LLDs systems formed by hydrophilic locking had more efficient transfection profiles and interacted with the erythrocyte membrane better than systems using the hydrophobic method. The results indicate these systems have improved transfection properties when compared to non-complexed components. The coating of dendrimers with lipids significantly reduced their hemotoxicity and cytotoxicity. The nanometric size, low polydispersity index and reduced positive zeta potential of such complexes made them attractive for future application in drug delivery. The formulations prepared by the hydrophobic locking protocol were not effective and will not be considered furthermore as prospective drug delivery systems. In contrast, the formulations formed by the hydrophilic loading method have shown promising results where the cytotoxicity of LLD systems with doxorubicin was more effective against cancer than normal cells.


Assuntos
Antineoplásicos , Dendrímeros , Neoplasias , Rutênio , Humanos , Dendrímeros/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Antineoplásicos/química , Doxorrubicina/química , Lipossomos/química , Neoplasias/tratamento farmacológico , Lipídeos
10.
Chem Mater ; 35(7): 2797-2807, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37063594

RESUMO

Carbosilane dendrimers are hyperbranched lipophilic scaffolds widely explored in biomedical applications. This work exploits, for the first time, the ability of these scaffolds to generate functional hydrogels with amphiphilic properties. The monodispersity and multivalency enable a precise synthetic control of the network, while the lipophilicity improves the compatibility with poorly soluble cargo. The first family of cleavable carbosilane dendrimers was designed for this purpose, overcoming one of the main drawbacks of these type of dendrimers. Biodegradable dendritic low-swelling hydrogels with aromatic nanodomains were easily prepared using the highly efficient click thiol-ene chemistry. Our studies through electron-paramagnetic resonance, molecular dynamics simulations, and experimental assays confirmed the impact of the carbosilane dendritic nanodomains in both the encapsulation and the release pattern of model drugs such as ibuprofen and curcumin. Curcumin-loaded hydrogels were further tested in in vitro assays against advanced prostate cancer cells. The dendritic hydrogels not only enabled drugs encapsulation; as proof of concept, ibuprofen was efficiently attached via fluoride-promoted esterification and was enzymatically cleaved, achieving a controlled release over time.

11.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37047610

RESUMO

Drug delivery systems such as dendrimers, liposomes, polymers or gold/silver nanoparticles could be used to advance modern medicine. One significant pharmacological problem is crossing biological barriers by commonly used drugs, e.g., in the treatment of neurodegenerative diseases, which have a problem of the blood-brain barrier (BBB) restricting drug delivery. Numerous studies have been conducted to find appropriate drug carriers that are safe, biocompatible and efficient. In this work, we evaluate pegylated gold nanoparticles AuNP14a and AuNP14b after their conjugation with therapeutic siRNA directed against APOE4. This genetic risk factor remains the strongest predictor for late-onset Alzheimer's disease. The study aimed to assess the biophysical properties of AuNPs/siAPOE complexes and to check their biological safety on healthy cells using human brain endothelial cells (HBEC-5i). Techniques such as fluorescence polarization, circular dichroism, dynamic light scattering, ζ-potential measurements and gel retardation assay showed that AuNPs form stable complexes with siRNA. Subsequently, cytotoxicity assays proved the biological safety of formed conjugates. Obtained results enabled us to find effective concentrations of AuNPs when complexes are formed and non-toxic for healthy cells. One of the studied nanoparticles, AuNP14b complexed with siRNA, displayed lower cytotoxicity (MTT assay, cells viability -74.8 ± 3.1%) than free nanoparticles (44.7 ± 3.6%). This may be promising for further investigations in nucleic acid delivery and could have practical use in treating neurodegenerative diseases.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Humanos , RNA Interferente Pequeno/genética , Ouro , Células Endoteliais , Prata , Polietilenoglicóis
12.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835489

RESUMO

Copper carbosilane metallodendrimers containing chloride ligands and nitrate ligands were mixed with commercially available conventional anticancer drugs, doxorubicin, methotrexate and 5-fluorouracil, for a possible therapeutic system. To verify the hypothesis that copper metallodendrimers can form conjugates with anticancer drugs, their complexes were biophysically characterized using zeta potential and zeta size methods. Next, to confirm the existence of a synergetic effect of dendrimers and drugs, in vitro studies were performed. The combination therapy has been applied in two cancer cell lines: MCF-7 (human breast cancer cell line) and HepG2 (human liver carcinoma cell line). The doxorubicin (DOX), methotrexate (MTX) and 5-fluorouracil (5-FU) were more effective against cancer cells when conjugated with copper metallodendrimers. Such combination significantly decreased cancer cell viability when compared to noncomplexed drugs or dendrimers. The incubation of cells with drug/dendrimer complexes resulted in the increase of the reactive oxygen species (ROS) levels and the depolarization of mitochondrial membranes. Copper ions present in the dendrimer structures enhanced the anticancer properties of the whole nanosystem and improved drug effects, inducing both the apoptosis and necrosis of MCF-7 (human breast cancer cell line) and HepG2 (human liver carcinoma cell line) cancer cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Carcinoma , Dendrímeros , Humanos , Feminino , Dendrímeros/química , Cobre/química , Metotrexato , Ligantes , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Fluoruracila , Linhagem Celular Tumoral
13.
Pharmaceutics ; 15(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36678925

RESUMO

The threat of antimicrobial-resistant bacteria is ever increasing and over the past-decades development of novel therapeutic counter measurements have virtually come to a halt. This circumstance calls for interdisciplinary approaches to design, evaluate and validate the mode of action of novel antibacterial compounds. Hereby, carbosilane dendritic systems that exhibit antimicrobial properties have the potential to serve as synthetic and rationally designed molecules for therapeutic use. The bow-tie type topology of BDTL049 was recently investigated against the Gram-positive model organism Bacillus subtilis, revealing strong bactericidal properties. In this study, we follow up on open questions concerning the usability of BDTL049. For this, we synthesized a fluorescent-labeled version of BDTL049 that maintained all antimicrobial features to unravel the interaction of the compound and bacterial membrane. Subsequently, we highlight the bacterial sensitivity against BDTL049 by performing a mutational study of known resistance determinants. Finally, we address the cytotoxicity of the compound in human cells, unexpectedly revealing a high sensitivity of the eukaryotic cells upon BDTL049 exposure. The insights presented here further elaborate on the unique features of BDTL049 as a promising candidate as an antimicrobial agent while not precluding that further rounds of rational designing are needed to decrease cytotoxicity to ultimately pave the way for synthetic antibiotics toward clinical applicability.

14.
Artigo em Inglês | MEDLINE | ID: mdl-36417901

RESUMO

Dendrimers are multifunctional molecules with well-defined size and structure due to the step-by-step synthetic procedures required in their preparation. Dendritic constructs based on carbosilane scaffolds present carbon-carbon and carbon-silicon bonds, which results in stable, lipophilic, inert, and flexible structures. These properties are highly appreciated in different areas, including the pharmaceutical field, as they can increase the interaction with cell membranes and improve the therapeutic action. This article summarizes the most recent advances in the pharmaceutical applications of carbosilane dendritic molecules, from therapeutics to diagnostics and prevention tools. Dendrimers decorated with cationic, anionic, or other moieties, including metallodendrimers; supramolecular assemblies; dendronized nanoparticles and surfaces; as well as dendritic networks like hydrogels are described. The collected examples confirm the potential of carbosilane dendrimers and dendritic materials as antiviral or antibacterial agents; in therapy against cancer, neurodegenerative disease, or oxidative stress; or many other biomedical applications. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Dendrímeros , Nanoestruturas , Doenças Neurodegenerativas , Humanos , Preparações Farmacêuticas
15.
Pharmaceutics ; 14(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36559122

RESUMO

Pluronics are a family of amphiphilic block copolymers broadly explored in the pharmaceutical field. Under certain conditions, Pluronics self-assemble in different structures including nanosized direct and reverse micelles. This review provides an overview about the main parameters affecting the micellization process of Pluronics, such as polymer length, fragments distribution within the chain, solvents, additives and loading of cargo. Furthermore, it offers a guide about the most common techniques used to characterize the structure and properties of the micelles. Finally, it presents up-to-date approaches to improve the stability and drug loading of Pluronic micelles. Special attention is paid to reverse Pluronics and reverse micelles, currently underexplored in the literature. Pluronic micelles present a bright future as drug delivery agents. A smart design and thorough characterization will improve the transfer to clinical applications.

16.
Front Microbiol ; 13: 912536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090105

RESUMO

Over the course of the last decades, the continuous exposure of bacteria to antibiotics-at least in parts due to misprescription, misuse, and misdosing-has led to the widespread development of antimicrobial resistances. This development poses a threat to the available medication in losing their effectiveness in treating bacterial infections. On the drug development side, only minor advances have been made to bring forward novel therapeutics. In addition to increasing the efforts and approaches of tapping the natural sources of new antibiotics, synthetic approaches to developing novel antimicrobials are being pursued. In this study, BDTL049 was rationally designed using knowledge based on the properties of natural antibiotics. BDTL049 is a carbosilane dendritic system with bow-tie type topology, which has antimicrobial activity at concentrations comparable to clinically established natural antibiotics. In this report, we describe its mechanism of action on the Gram-positive model organism Bacillus subtilis. Exposure to BDTL049 resulted in a complex transcriptional response, which pointed toward disturbance of the cell envelope homeostasis accompanied by disruption of other central cellular processes of bacterial metabolism as the primary targets of BDTL049 treatment. By applying a combination of whole-cell biosensors, molecular staining, and voltage sensitive dyes, we demonstrate that the mode of action of BDTL049 comprises membrane depolarization concomitant with pore formation. As a result, this new molecule kills Gram-positive bacteria within minutes. Since BDTL049 attacks bacterial cells at different targets simultaneously, this might decrease the chances for the development of bacterial resistances, thereby making it a promising candidate for a future antimicrobial agent.

17.
Cells ; 11(10)2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35626734

RESUMO

Cationic dendrimers are effective carriers for the delivery of siRNA into cells; they can penetrate cell membranes and protect nucleic acids against RNase degradation. Two types of dendrimers (CBD-1 and CBD-2) and their complexes with pro-apoptotic siRNA (Mcl-1 and Bcl-2) were tested on MCF-7 cells cultured as spheroids. Cytotoxicity of dendrimers and dendriplexes was measured using the live-dead test and Annexin V-FITC Apoptosis Detection Kit (flow cytometry). Uptake of dendriplexes was examined using flow cytometry and confocal microscopy. The live-dead test showed that for cells in 3D, CBD-2 is more toxic than CBD-1, contrasting with the data for 2D cultures. Attaching siRNA to a dendrimer molecule did not lead to increased cytotoxic effect in cells, either after 24 or 48 h. Measurements of apoptosis did not show a high increase in the level of the apoptosis marker after 24 h exposure of spheroids to CBD-2 and its dendriplexes. Measurements of the internalization of dendriplexes and microscopy images confirmed that the dendriplexes were transported into cells of the spheroids. Flow cytometry analysis of internalization indicated that CBD-2 transported siRNAs more effectively than CBD-1. Cytotoxic effects were visible after incubation with 3 doses of complexes for CBD-1 and both siRNAs.


Assuntos
Antineoplásicos , Dendrímeros , Cátions , Dendrímeros/farmacologia , Humanos , Células MCF-7 , Tamanho da Partícula , RNA Interferente Pequeno/metabolismo , Silanos
18.
Pharmaceutics ; 14(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35057050

RESUMO

The COVID-19 pandemic showed more deeply the need of our society to provide new therapeutic strategies to fight infectious diseases, not only against currently known illnesses, where common antibiotics and drugs appear to be not fully effective, but also against new infectious threats that may arise [...].

19.
Biomacromolecules ; 22(11): 4582-4591, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34613701

RESUMO

Accumulation of misfolded α-synuclein (α-syn) is a hallmark of Parkinson's disease (PD) thought to play important roles in the pathophysiology of the disease. Dendritic systems, able to modulate the folding of proteins, have emerged as promising new therapeutic strategies for PD treatment. Dendrimers have been shown to be effective at inhibiting α-syn aggregation in cell-free systems and in cell lines. Here, we set out to investigate the effects of dendrimers on endogenous α-syn accumulation in disease-relevant cell types from PD patients. For this purpose, we chose cationic carbosilane dendrimers of bow-tie topology based on their performance at inhibiting α-syn aggregation in vitro. Dopamine neurons were differentiated from induced pluripotent stem cell (iPSC) lines generated from PD patients carrying the LRRK2G2019S mutation, which reportedly display abnormal accumulation of α-syn, and from healthy individuals as controls. Treatment of PD dopamine neurons with non-cytotoxic concentrations of dendrimers was effective at preventing abnormal accumulation and aggregation of α-syn. Our results in a genuinely human experimental model of PD highlight the therapeutic potential of dendritic systems and open the way to developing safe and efficient therapies for delaying or even halting PD progression.


Assuntos
Dendrímeros , Doença de Parkinson , alfa-Sinucleína , Dendrímeros/farmacologia , Neurônios Dopaminérgicos , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Silanos , alfa-Sinucleína/genética
20.
Pharmaceutics ; 13(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34683842

RESUMO

Cancer is one of the most important problems of modern medicine. At the present time, gene therapy has been developed against cancer, which includes the delivery of anticancer small interfering RNAs (siRNAs) directed at cancer proteins. The prospect of creating drugs based on RNA interference implies the use of delivery systems. Metal nanoparticles are the most studied objects for medicine, including their application as non-viral vectors. We have synthesized gold nanoparticles (AuNPs) modified with cationic carbosilane dendrons of 1-3 generations, with a positive charge on the surface, gold nanoparticles can effectively bind small interfering RNAs. Using a photometric viability test and flow cytometry, we assessed the ability of dendronized gold nanoparticles in delivering siRNAs to tumor cells. The efficiency of the complexes in initiating apoptosis was measured and, also, the overall effect of proapoptotic siRNA on cells. AuNP15 has both the highest efficacy and toxicity. The delivery efficiency in suspension cell lines was 50-60%. Complexes with targeted siRNA decreased cell viability by 20% compared to control and initiated apoptosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...