Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(32)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38478995

RESUMO

We present a theoretical investigation of the Goös-Hanchen shift (GHS) experienced by acoustic and optical vibrational modes reflected and transmitted from the surfaces of a semiconductor thin film sandwiched between two semi-infinite media. Our study focuses on the impact of the incident angle on the GHS, considering the coupling between longitudinal and transverse modes. For acoustic vibrations, our findings reveal that the GHS can reach magnitudes up to seven times larger than the thickness of the thin film and up to 20 times larger than the incident wavelength. Besides, it is shown that this significant amplification of the GHS highlights the strong influence of the incident angle and the frequency of the modes involved. In the case of optical vibrations, we observe even more pronounced GHS values, exceeding 30 times the incident wavelength. This demonstrates the potential of GHS in acoustical systems, which opens up possibilities for applications in the design of acoustic devices.

2.
Opt Express ; 30(19): 34984-34997, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242501

RESUMO

The scattering properties of metallic optical antennas are typically examined through the lens of their plasmonic resonances. However, non-plasmonic transition metals also sustain surface waves in the visible. We experimentally investigate in this work the far-field diffraction properties of apertured optical antennas milled on non-plasmonic W films and compare the results with plasmonic references in Ag and Au. The polarization-dependent diffraction patterns and the leakage signal emerging from apertured antennas in both kinds of metals are recorded and analyzed. This thorough comparison with surface plasmon waves reveals that surface waves are launched on W and that they have the common abilities to confine the visible light at metal-dielectric interfaces offering the possibility to tailor the far-field emission. The results have been analyzed through theoretical models accounting for the propagation of a long range surface mode launched by subwavelength apertures, that is scattered in free space by the antenna. This surface mode on W can be qualitatively described as an analogy in the visible of the Zenneck wave in the radio regime. The nature of the new surface waves have been elucidated from a careful analysis of the asymptotic expansion of the electromagnetic propagators, which provides a convenient representation for explaining the Zenneck-like character of the excited waves and opens new ways to fundamental studies of surface waves at the nanoscale beyond plasmonics.

3.
ACS Nano ; 15(4): 6669-6677, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33789040

RESUMO

On-chip integration of plasmonics and electronics can benefit a broad range of applications in biosensing, signal processing, and optoelectronics. A key requirement is a chip-scale manufacturing method. Here, we demonstrate a split-trench resonator platform that combines a high-quality-factor resonant plasmonic biosensor with radio frequency (RF) nanogap tweezers. The split-trench resonator can simultaneously serve as a dielectrophoretic trap and a nanoplasmonic sensor. Trapping is accomplished by applying an RF electrical bias across a 10 nm gap, thereby either attracting or repelling analytes. Trapped analytes are detected in a label-free manner using refractive-index sensing, enabled by interference between surface-plasmon standing waves in the trench and light transmitted through the gap. This active sample concentration mechanism enables detection of nanoparticles and proteins at a concentration as low as 10 pM. We can manufacture centimeter-long split-trench cavity resonators with high throughput via photolithography and atomic layer deposition, toward practical applications in biosensing, spectroscopy, and optoelectronics.

4.
J Phys Condens Matter ; 29(12): 125301, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28070021

RESUMO

We study the tunneling of optical vibrational modes with transverse horizontal polarization that impinge, at a given angle, on a semiconductor heterostructure. We find a large influence of the Goos-Hänchen shift on tunneling times. In particular, a Goos-Hänchen shift larger than the barrier thickness is reported for the first time. The relation between Goos-Hänchen and Hartman effects is also discussed. The identity that equals the dwell time to the sum of transmission and interference times, previously derived for one-dimensional tunneling problems, is extended to the two-dimensional case. Closed-form expressions are developed for the relevant quantities. Instead of using the standard approach, the interference time is computed from the vibrational energy density. The present study could be useful for the design of semiconductor devices.

5.
Opt Express ; 16(5): 3420-9, 2008 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-18542433

RESUMO

The excitation of surface plasmon polaritons (SPP) by focusing a laser beam on single subwavelength holes opened in a thin gold film is studied both experimentally and theoretically. By means of leakage radiation microscopy, quantitative measurements of the light-SPP coupling efficiency are performed for holes with different sizes and shapes. The system is studied theoretically by using a modal expansion method to calculate the fraction of the incident energy which is scattered by the hole into a surface plasmon. We demonstrate that a single subwavelength hole can be used to generate SPP with an efficiency up to 28%.


Assuntos
Ouro/química , Membranas Artificiais , Modelos Teóricos , Refratometria/métodos , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...