Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 414(27): 7897-7909, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36149475

RESUMO

The investigation and control of jet fuel contamination for private aircrafts has gained attention due to the softer monitoring in comparison to commercial aviation. The possible contamination with kerosene solvent (KS) makes this investigation more challenging, since it has physicochemical similarities with jet fuel. To help solve this problem, a chemometric methodology was applied in this research combining multivariate curve resolution with alternating least squares (MCR-ALS) and partial least squares (PLS) models coupled to near- and mid-infrared spectroscopies (MIR/NIR) in order to detect and quantify KS in blends with JET-A1 using 23 samples (5-60% v/v). Additionally, 98 samples were stored for 60 days, and principal component analysis, genetic algorithm, and successive projections algorithm were coupled to linear discriminant analysis (PCA-LDA, GA-LDA, and SPA-LDA) in order to classify the blends according to the bands assigned to oxidation products, such as phenols and carboxylic acids. GA-LDA and SPA-LDA models were accurate and reached 100% sensitivity and specificity. Physicochemical analysis was not able to detect the presence of KS in contaminated jet fuel samples, even in high concentrations. The use of MIR-NIR combined spectra improved the quantification results, thus decreasing the experimental error from 5.22% (using only NIR) to 1.64%. PLS regression quantified the content of KS with high accuracy (RMSEP < 1.64%, R2 > 0.995). The MCR-ALS model stood out for recovering the spectral profile of kerosene solvent by segregating it from jet fuel spectra. The development of models using chemometric tools contributed to a fast, low-cost, and efficient process for quality control that can be applied in the fuel industry.


Assuntos
Querosene , Fenóis , Ácidos Carboxílicos , Análise dos Mínimos Quadrados , Solventes
2.
Food Chem ; 384: 132321, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219232

RESUMO

This study evaluated the feasibility of infrared (MIR/NIR) spectroscopy coupled to chemometrics as an alternative method for determining the antioxidant activity (AA%) of pomegranate (Punica granatum) and clove (Syzygium aromaticum) alcoholic extracts versus the conventional DPPH method. Multivariate curve resolution with alternating least squares (MCR-ALS) and Partial least squares (PLS) regression were efficient to predict the AA%, thus providing good accuracy and low residuals compared to the standard method. The MCR-ALS combined with NIR data stood out among the other models with R2 ≥ 0.962 and RMSEP ≤ 3.38 %; furthermore, this technique presents the great feature of recovering the pure spectral profile of the analytes and identifying interferents in the sample. The application of chemometrics tools to predict the antioxidant activity of natural extracts resulted in a greener, low-cost and efficient process for the food industry.


Assuntos
Punica granatum , Syzygium , Antioxidantes , Análise dos Mínimos Quadrados , Extratos Vegetais , Análise Espectral
3.
J Forensic Sci ; 66(6): 2080-2091, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34291458

RESUMO

For more than two decades, infrared spectroscopy techniques combined with multivariate analysis have been efficiently applied in several entomological fields, such as Taxonomy and Toxicology. However, little is known about its use and applicability in Forensic entomology (FE) field, with vibrational techniques such as Near-infrared spectroscopy (NIRS) and Medium-infrared spectroscopy (MIRS) underutilized in forensic sciences. Thus, this work describes the potential of NIRS, MIRS, and other spectroscopic methodologies, for entomological analysis in FE, as well as discusses its future uses for criminal or civil investigations. After a thorough research on scientific journals database, a total of 33 publications were found in scientific journals, with direct or indirect application to FE, including experimental applications of NIRS and MIRS in taxonomic discrimination of species, larval age prediction, detection of toxic substances in insects from environments or crime scenes, and detection of internal or external infestations by live or dead insects in stored products. Besides, NIRS and MIRS combined with multivariate analysis were efficient, inexpensive, fast, and non-destructive analytical tools. However, more than 51% of the spectroscopic publications are concentrated in the stored products field, and so we discuss the need for expansion and more direct application in other FE areas. We hope the number of articles continues to increase, and as NIRS and MIRS technology progress, they advance in forensic research and routine use.


Assuntos
Entomologia Forense , Espectroscopia de Luz Próxima ao Infravermelho , Agricultura , Algoritmos , Animais , Conservação dos Recursos Naturais , Crime , Humanos , Análise Multivariada , Mudanças Depois da Morte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...