Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31715566

RESUMO

We experimentally demonstrate the dynamical tuning of the acoustic field in a surface acoustic wave (SAW) cavity defined by a periodic arrangement of metal stripes on LiNbO3 substrate. Applying a dc voltage to the ends of the metal grid results in a temperature rise due to resistive heating that changes the frequency response of the device up to 0.3%, which can be used to control the acoustic transmission through the structure. The timescale of the switching is demonstrated to be of about 200 ms. In addition, we have also performed finite-element simulations of the transmission spectrum of a model system, which exhibits a temperature dependence consistent with the experimental data. The advances shown here enable easy, continuous, dynamical control and could be applied for a variety of substrates.

2.
Nano Lett ; 18(8): 5091-5097, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30044921

RESUMO

Wurtzite semiconductor compounds have two silent modes, B1 l and B1 h. A silent mode is a vibrational mode that carries neither a dipole moment nor Raman polarizability. Thus, they are forbidden in both infrared reflectivity and Raman spectroscopy. Astonishingly, we detected the B1 l mode in high-quality, ultra-narrow GaN nanowires using resonant Raman scattering, although the B1 h was not observed, and there is no immediate explanation for this asymmetric finding. The Raman experiments were performed using several laser lines from 647 to 325 nm; the latter is a wavelength in which Raman becomes resonant. Actually, we observed the B1 l mode only in resonance, indicating that the appearance of this mode is related to Fröhlich electron-phonon interactions; i.e., a dipole moment emerging in the B1 l silent mode may not be present in the B1 h mode. To shed light onto the physical origin of these observations, we performed density functional theory calculations of the lattice dynamics in GaN. We performed a careful analysis of the different physical mechanisms that allow the forbidden mode to appear to explain the physics underlying the nonzero dipole moment in the B1 l mode, and the reason why this dipole moment is not present in the B1 h mode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...