Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Phys Chem B ; 124(20): 4185-4192, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32383879

RESUMO

We report the first real-time imaging of individualized boron nitride nanotubes (BNNTs) via stabilization with a rhodamine surfactant and fluorescence microscopy. We study the rotational and translational diffusion and find them to agree with predictions based on a confined, high-aspect-ratio rigid rod undergoing Brownian motion. We find that the behavior of BNNTs parallels that of individualized carbon nanotubes (CNTs), indicating that BNNTs could also be used as model rigid rods to study soft matter systems, while avoiding the experimental disadvantages of CNTs due to their strong light absorption. The use and further development of our technique and findings will accelerate the application of BNNTs from material engineering to biological studies.

2.
ACS Omega ; 4(3): 5098-5106, 2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459687

RESUMO

The functionalization of nanomaterials has long been studied as a way to manipulate and tailor their properties to a desired application. Of the various methods available, the Billups-Birch reduction has become an important and widely used reaction for the functionalization of carbon nanotubes (CNTs) and, more recently, boron nitride nanotubes. However, an easily overlooked source of error when using highly reductive conditions is the utilization of poly(tetrafluoroethylene) (PTFE) stir bars. In this work, we studied the effects of using this kind of stir bar versus using a glass stir bar by measuring the resulting degree of functionalization with 1-bromododecane. Thermogravimetric analysis studies alone could deceive one into thinking that reactions stirred with PTFE stir bars are highly functionalized; however, the utilization of spectroscopic techniques, such as Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, tells otherwise. Furthermore, in the case of CNTs, we determined that using Raman spectroscopy alone for analysis is not sufficient to demonstrate successful chemical modification.

3.
Nanoscale Adv ; 1(3): 1096-1103, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36133196

RESUMO

Boron nitride nanotubes (BNNTs) belong to a novel class of material with useful thermal, electronic and optical properties. However, the study and the development of applications of this material requires the formation of stable dispersions of individual BNNTs in water. Here we address the dispersion of BNNT material in water using surfactants with varying properties. The surfactants were compared based on the quantity of BNNTs dispersed and the quality of the dispersions, as visualized by AFM and cryo-TEM. All surfactants produce dispersions of individualized or small bundles of BNNTs. Of the surfactants tested, high molecular weight, nonionic surfactants suspend the most BNNTs, while ionic surfactants remove the most h-BN impurities. The surfactant dispersions were further characterized by ensemble measurements, such as UV absorption and photoluminescence, dynamic light scattering (DLS), and zeta potential to investigate dispersion stability and quality. These techniques provide a facile strategy for testing future BNNT dispersions. The results of this study reveal that BNNT dispersions in aqueous solution can be tuned to fit a specific application through surfactant selection.

4.
Adv Mater ; 30(44): e1803366, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30239044

RESUMO

The transformation from semiconducting to metallic phase, accompanied by a structural transition in 2D transition metal dichalcogenides has attracted the attention of the researchers worldwide. The unconventional structural transformation of fluorinated WS2 (FWS2 ) into the 1T phase is described. The energy difference between the two phases debugs this transition, as fluorination enhances the stability of 1T FWS2 and makes it energetically favorable at higher F concentration. Investigation of the electronic and optical nature of FWS2 is supplemented by possible band structures and bandgap calculations. Magnetic centers in the 1T phase appear in FWS2 possibly due to the introduction of defect sites. A direct consequence of the phase transition and associated increase in interlayer spacing is a change in friction behavior. Friction force microscopy is used to determine this effect of functionalization accompanied phase transformation.

5.
Sci Adv ; 3(7): e1700842, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28740867

RESUMO

We report the fluorination of electrically insulating hexagonal boron nitride (h-BN) and the subsequent modification of its electronic band structure to a wide bandgap semiconductor via introduction of defect levels. The electrophilic nature of fluorine causes changes in the charge distribution around neighboring nitrogen atoms in h-BN, leading to room temperature weak ferromagnetism. The observations are further supported by theoretical calculations considering various possible configurations of fluorinated h-BN structure and their energy states. This unconventional magnetic semiconductor material could spur studies of stable two-dimensional magnetic semiconductors. Although the high thermal and chemical stability of h-BN have found a variety of uses, this chemical functionalization approach expands its functionality to electronic and magnetic devices.

6.
Int J Pharm ; 477(1-2): 294-305, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25447825

RESUMO

There is a special interest in having pharmaceutical active ingredients in the amorphous state due to their increased solubility and therefore, higher bioavailability. Nevertheless, not all of them present stable amorphous phases. In particular, paracetamol is an active ingredient widely known for its instability when prepared in the amorphous state. In the present work thermally stable amorphous binary paracetamol based systems were obtained showing stability on a wide range of temperatures: below its glass transition temperature (Tg) as amorphous solids in the glassy state and above their glass transition temperature, where these materials exist as stable supercooled liquids. To achieve stabilization of the binary paracetamol based system several strategies were applied and optimized, being the selection of the container material a key and novel approach to control the mechanical stress during cooling, eliminating cracks which act as nucleation centers leading to crystallization.


Assuntos
Acetaminofen/química , Transição de Fase , Tecnologia Farmacêutica/métodos , Antipirina/química , Cristalização , Estabilidade de Medicamentos , Estrutura Molecular , Solubilidade , Estresse Mecânico , Fatores de Tempo , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...