Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 186: 77-85, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38865907

RESUMO

A key question in anaerobic microbial ecology is how microbial communities develop over different stages of waste decomposition and whether these changes are specific to waste types. We destructively sampled over time 26 replicate bioreactors cultivated on fruit/vegetable waste (FVW) and meat waste (MW) based on pre-defined waste components and composition. To characterize community shifts, we examined 16S rRNA genes from both the leachate and solid fractions of the waste. Waste decomposition occurred faster in FVW than MW, as accumulation of ammonia in MW reactors led to inhibition of methanogenesis. We identified population succession during different stages of waste decomposition and linked specific populations to different waste types. Community analyses revealed underrepresentation of methanogens in the leachate fractions, emphasizing the importance of consistent and representative sampling when characterizing microbial communities in solid waste.

2.
J Water Health ; 22(6): 978-992, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935450

RESUMO

Wastewater-based epidemiology has expanded as a tool for collecting COVID-19 surveillance data, but there is limited information on the feasibility of this form of surveillance within decentralized wastewater systems (e.g., septic systems). This study assessed SARS-CoV-2 RNA concentrations in wastewater samples from a septic system servicing a mobile home park (66 households) and from two pumping stations serving a similarly sized (71 households) and a larger (1,000 households) neighborhood within a nearby sewershed over 35 weeks in 2020. Also, raw wastewater from a hospital in the same sewershed was sampled. The mobile home park samples had the highest detection frequency (39/39 days) and mean concentration of SARS-CoV-2 RNA (2.7 × 107 gene copies/person/day for the N1) among the four sampling sites. N1 gene and N2 gene copies were highly correlated across mobile home park samples (Pearson's r = 0.93, p < 0.0001). In the larger neighborhood, new COVID-19 cases were reported every week during the sampling period; however, we detected SARS-CoV-2 RNA in 12% of the corresponding wastewater samples. The results of this study suggest that sampling from decentralized wastewater infrastructure can be used for continuous monitoring of SARS-CoV-2 infections.


Assuntos
COVID-19 , RNA Viral , SARS-CoV-2 , Águas Residuárias , Águas Residuárias/virologia , COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , RNA Viral/genética , RNA Viral/análise , RNA Viral/isolamento & purificação , Humanos , Vigilância Epidemiológica Baseada em Águas Residuárias , Esgotos/virologia
3.
Water Res ; 255: 121495, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554629

RESUMO

Microbial community assembly (MCA) processes that shape microbial communities in environments are being used to analyze engineered bioreactors such as activated sludge systems and anaerobic digesters. The goal of studying MCA is to be able to understand and predict the effect of design and operation procedures on bioreactor microbial composition and function. Ultimately, this can lead to bioreactors that are more efficient, resilient, or resistant to perturbations. This review summarizes the ecological theories underpinning MCA, evaluates MCA analysis methods, analyzes how these MCA-based methods are applied to engineered bioreactors, and extracts lessons from case studies. Furthermore, we suggest future directions in MCA research in engineered bioreactor systems. The review aims to provide insights and guidance to the growing number of environmental engineers who wish to design and understand bioreactors through the lens of MCA.

4.
Environ Sci Technol ; 57(50): 21200-21211, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38048183

RESUMO

Cell viability is a critical indicator for assessing culture quality in microalgae cultivation for biorefinery and bioremediation. Fluorescent dyes that distinguish viable from nonviable cells can enable viability quantification based on the percentage of live cells. However, fluorescence analysis using the typical flow cytometry method is costly and impractical for industrial applications. To address this, we developed new microplate assays utilizing fluorescein diacetate as a live cell stain and erythrosine B as a dead cell stain. These assays provide a low-cost, simple, and reliable method of assessing cell viability. The proposed microplate assays were successfully applied to monitor the viability of the microalgae Dunaliella viridis under carbon and nitrogen limitation stresses and demonstrated good agreement with flow cytometry measurements. We conducted a systematic investigation of the effects of dye concentration, incubation time, and background fluorescence on the microplate assays' performance. Further, we provide a comprehensive review of commonly used fluorescent dyes for microalgae staining, discuss strategies to enhance assay performance, and offer recommendations for dye selection and protocol development. This study presents a comprehensive new method for microplate-based viability analysis, providing valuable insights for future microalgae viability assessments and applications.


Assuntos
Corantes Fluorescentes , Microalgas , Citometria de Fluxo/métodos , Sobrevivência Celular , Análise Custo-Benefício
5.
Environ Sci Technol ; 57(48): 19078-19087, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37956995

RESUMO

Successfully addressing the complex global sanitation problem is a massive undertaking. Anaerobic digestion (AD), coupled with post-treatment, has been identified as a promising technology to contribute to meeting this goal. It offers multiple benefits to the end users, such as the potential inactivation of pathogenic microorganisms in waste and the recovery of resources, including renewable energy and nutrients. This feature article provides an overview of the most frequently applied AD systems for decentralized communities and low- and lower-middle-income countries with an emphasis on sanitation, including technologies for which pathogen inactivation was considered during the design. Challenges to AD use are then identified, such as experience, economics, knowledge/training of personnel and users, and stakeholder analysis. Finally, accelerators for AD implementation are noted, such as the inclusion of field studies in academic journals, analysis of emerging contaminants, the use of sanitation toolboxes and life cycle assessment in design, incorporation of artificial intelligence in monitoring, and expansion of undergraduate and graduate curricula focused on Water, Sanitation, and Hygiene (WASH).


Assuntos
Inteligência Artificial , Saneamento , Anaerobiose , Tecnologia , Água , Abastecimento de Água
6.
Sci Total Environ ; 891: 164087, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209725

RESUMO

Minimizing the use of water for growing microalgae is crucial for lowering the energy and costs of animal feed, food, and biofuel production from microalgae. Dunaliella spp., a haloterant species that can accumulate high intracellular levels of lipids, carotenoids, or glycerol can be harvested effectively using low-cost and scalable high pH-induced flocculation. However, the growth of Dunaliella spp. in reclaimed media after flocculation and the impact of recycling on the flocculation efficiency have not been explored. In this study, repeated cycles of growth of Dunaliella viridis in repeatedly reclaimed media from high pH-induced flocculation were studied by evaluating cell concentrations, cellular components, dissolved organic matter (DOM), and bacterial community shifts in the reclaimed media. In reclaimed media, D. viridis grew to the same concentrations of cells and intracellular components as fresh media-107 cells/mL with cellular composition of 3 % lipids, 40 % proteins, and 15 % carbohydrates-even though DOM accumulated and the dominant bacterial populations changed. There was a decrease in the maximum specific growth rate and flocculation efficiency from 0.72 d-1 to 0.45 d-1 and from 60 % to 48 %, respectively. This study shows the potential of repeated (at least five times) flocculation and reuse of media as a possible way of reducing the costs of water and nutrients with some tradeoffs in growth rate and flocculation efficiency.


Assuntos
Clorofíceas , Floculação , Microalgas , Biomassa , Concentração de Íons de Hidrogênio , Lipídeos , Microalgas/metabolismo , Água/metabolismo
7.
Environ Sci Technol ; 56(16): 11180-11188, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35930490

RESUMO

Water and sanitation (wastewater) infrastructure in the United States is aging and deteriorating, with massive underinvestment over the past several decades. For many years, lack of attention to water and sanitation infrastructure has combined with racial segregation and discrimination to produce uneven access to water and wastewater services resulting in growing threats to human and environmental health. In many metropolitan areas in the U.S., those that often suffer disproportionately are residents of low-income, minority communities located in urban disadvantaged unincorporated areas on the margins of major cities. Through the process of underbounding (the selective expansion of city boundaries to exclude certain neighborhoods often based on racial demographics or economics), residents of these communities are disallowed municipal citizenship and live without piped water, sewage lines, and adequate drainage or flood control. This Perspective identifies the range of water and sanitation challenges faced by residents in these communities. We argue that future investment in water and sanitation should prioritize these communities and that interventions need to be culturally context sensitive. As such, approaches to address these problems must not only be technical but also social and give attention to the unique geographic and political setting of local infrastructures.


Assuntos
Saneamento , Abastecimento de Água , Humanos , Esgotos , Estados Unidos , Águas Residuárias , Água
8.
Artigo em Inglês | MEDLINE | ID: mdl-35886640

RESUMO

Over 60 countries have integrated wastewater-based epidemiology (WBE) in their COVID-19 surveillance programs, focusing on wastewater treatment plants (WWTP). In this paper, we piloted the assessment of SARS-CoV-2 WBE as a complementary public health surveillance method in susceptible communities in a highly urbanized city without WWTP in the Philippines by exploring the extraction and detection methods, evaluating the contribution of physico-chemical-anthropogenic factors, and attempting whole-genome sequencing (WGS). Weekly wastewater samples were collected from sewer pipes or creeks in six communities with moderate-to-high risk of COVID-19 transmission, as categorized by the City Government of Davao from November to December 2020. Physico-chemical properties of the wastewater and anthropogenic conditions of the sites were noted. Samples were concentrated using a PEG-NaCl precipitation method and analyzed by RT-PCR to detect the SARS-CoV-2 N, RdRP, and E genes. A subset of nine samples were subjected to WGS using the Minion sequencing platform. SARS-CoV-2 RNA was detected in twenty-two samples (91.7%) regardless of the presence of new cases. Cycle threshold values correlated with RNA concentration and attack rate. The lack of a sewershed map in the sampled areas highlights the need to integrate this in the WBE planning. A combined analysis of wastewater physico-chemical parameters such as flow rate, surface water temperature, salinity, dissolved oxygen, and total dissolved solids provided insights on the ideal sampling location, time, and method for WBE, and their impact on RNA recovery. The contribution of fecal matter in the wastewater may also be assessed through the coliform count and in the context of anthropogenic conditions in the area. Finally, our attempt on WGS detected single-nucleotide polymorphisms (SNPs) in wastewater which included clinically reported and newly identified mutations in the Philippines. This exploratory report provides a contextualized framework for applying WBE surveillance in low-sanitation areas.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Filipinas/epidemiologia , Projetos Piloto , RNA Viral , SARS-CoV-2/genética , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
9.
Leuk Lymphoma ; 63(6): 1348-1355, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35120432

RESUMO

The backbone induction therapy for primary central nervous system lymphoma (PCNSL) is high dose methotrexate (HD-MTX) and rituximab, which can be combined with other chemotherapeutic agents. The optimal dose of HD-MTX remains unclear, as doses between 3 and 8 g/m2 have been shown to be effective. In this retrospective study, HD-MTX dosed at 3-5 g/m2 demonstrated an overall response of 81.8%, with 11 (50%) complete responses. The median overall survival was not met at 29 months and median progression free survival was 12.5 months.There were two discontinuations due to nephrotoxicity. The most common adverse event was hepatotoxicity (18.5%), with no treatment-related mortality events observed.Overall, HD-MTX dosed at 3-5 g/m2 demonstrated similar efficacy and lower toxicity compared to higher doses in PCNSL patients. Reducing the initial HD-MTX dose may help ensure tolerability and completion of induction therapy, especially in patients with co-morbidities or older age who have poorer outcomes.


Assuntos
Neoplasias do Sistema Nervoso Central , Linfoma , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Sistema Nervoso Central , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Humanos , Linfoma/diagnóstico , Linfoma/tratamento farmacológico , Metotrexato/uso terapêutico , Estudos Retrospectivos
10.
Emerg Infect Dis ; 27(9): 1-8, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34424162

RESUMO

Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has garnered extensive public attention during the coronavirus disease pandemic as a proposed complement to existing disease surveillance systems. Over the past year, methods for detection and quantification of SARS-CoV-2 viral RNA in untreated sewage have advanced, and concentrations in wastewater have been shown to correlate with trends in reported cases. Despite the promise of wastewater surveillance, for these measurements to translate into useful public health tools, bridging the communication and knowledge gaps between researchers and public health responders is needed. We describe the key uses, barriers, and applicability of SARS-CoV-2 wastewater surveillance for supporting public health decisions and actions, including establishing ethics consideration for monitoring. Although wastewater surveillance to assess community infections is not a new idea, the coronavirus disease pandemic might be the initiating event to make this emerging public health tool a sustainable nationwide surveillance system, provided that these barriers are addressed.


Assuntos
COVID-19 , Saúde Pública , Humanos , Pandemias , SARS-CoV-2 , Águas Residuárias
11.
Environ Eng Sci ; 38(5): 402-417, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34079211

RESUMO

Anthropologists contribute key insights toward a comprehensive understanding of water, sanitation, and hygiene (WASH) as a multidimensional, multiscalar, and culturally embedded phenomenon. Yet, these insights have yet to be sufficiently operationalized and implemented in WASH development and wider WASH access-related paradigms. Ensuring WASH security requires a comprehensive approach to identifying both human health risk and environmental impact of WASH-related programs and strategies. It requires an understanding of how sanitation is integrated into households and communities and how individuals within particular cultural contexts practice sanitation and hygiene. This work facilitates that goal by outlining the major contributions of anthropology and allied social sciences to WASH, as well as outlining key considerations for future work and collaboration. We identify six major themes that, if applied in future engineering approaches, will more equitably integrate stakeholders and multiple vantage points in the successful implementation of WASH projects for marginalized and diverse groups. These include a critical understanding of previous approaches, culturally aware interventions, capacity building that considers (un)intended impact, co-created technology, collaboration between fields such as anthropology and engineering, and challenge-ready initiatives that respond to historic and emergent social and environmental inequity.

12.
PLoS Negl Trop Dis ; 15(3): e0009176, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33651818

RESUMO

Wastewater based epidemiology (WBE) is increasingly used to provide decision makers with actionable data about community health. WBE efforts to date have primarily focused on sewer-transported wastewater in high-income countries, but at least 1.8 billion people in low- and middle-income countries (LMIC) use onsite sanitation systems such as pit latrines and septic tanks. Like wastewater, fecal sludges from such systems offer similar advantages in community pathogen monitoring and other epidemiological applications. To evaluate the distribution of enteric pathogens inside pit latrines-which could inform sampling methods for WBE in LMIC settings unserved by sewers-we collected fecal sludges from the surface, mid-point, and maximum-depth of 33 pit latrines in urban and peri-urban Malawi and analyzed the 99 samples for 20 common enteric pathogens via multiplex quantitative reverse transcription PCR. Using logistic regression adjusted for household population, latrine sharing, the presence of a concrete floor or slab, water source, and anal cleansing materials, we found no significant difference in the odds of detecting the 20 pathogens from the mid-point (adjusted odds ratio, aOR = 1.1; 95% confidence interval = 0.73, 1.6) and surface samples (aOR = 0.80, 95% CI = 0.54, 1.2) compared with those samples taken from the maximum depth. Our results suggest that, for the purposes of routine pathogen monitoring, pit latrine sampling depth does not strongly influence the odds of detecting enteric pathogens by molecular methods. A single sample from the pit latrines' surface, or a composite of surface samples, may be preferred as the most recent material contributed to the pit and may be easiest to collect.


Assuntos
Esgotos/microbiologia , Esgotos/parasitologia , Manejo de Espécimes/métodos , Banheiros , Animais , DNA Bacteriano , DNA de Helmintos , DNA de Protozoário , DNA Viral , Humanos , Malaui , Reação em Cadeia da Polimerase Multiplex/métodos , Características de Residência , População Urbana
13.
J Pediatr Hematol Oncol ; 43(4): e554-e557, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32569035

RESUMO

Renal vein thrombosis is the most common non-catheter-associated venous thromboembolism event in neonates, accounting for up to 20% of cases. Although mortality rates are lower than a variety of other forms of pediatric thrombosis, renal vein thrombi are associated with significant short-term and long-term sequelae. This report presents the case of a full-term neonate presenting with bilateral renal vein thrombosis with inferior vena cava involvement treated with catheter-directed thrombolysis. This case report intends to highlight the value of a multidisciplinary approach to pediatric venous thromboembolism and to outline relevant procedural details and current laboratory and imaging monitoring of catheter-directed thrombolysis.


Assuntos
Terapia Trombolítica/instrumentação , Tromboembolia Venosa/terapia , Catéteres , Feminino , Humanos , Recém-Nascido , Terapia Trombolítica/métodos , Veia Cava Inferior/patologia , Tromboembolia Venosa/sangue , Tromboembolia Venosa/patologia
14.
Paediatr Drugs ; 22(5): 485-499, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32860590

RESUMO

Leukemia, most commonly B-cell acute lymphoblastic leukemia (B-ALL), accounts for about 30% of childhood cancer diagnoses. While there have been dramatic improvements in childhood ALL outcomes, certain subgroups-particularly those who relapse-fare poorly. In addition, cure is associated with significant short- and long-term side effects. Given these challenges, there is great interest in novel, targeted approaches to therapy. A number of new immunotherapeutic agents have proven to be efficacious in relapsed or refractory disease and are now being investigated in frontline treatment regimens. Blinatumomab (a bispecific T-cell engager that targets cluster of differentiation [CD]-19) and inotuzumab ozogamicin (a humanized antibody-drug conjugate to CD22) have shown the most promise. Chimeric antigen receptor T (CAR-T) cells, a form of adoptive immunotherapy, rely on the transfer of genetically modified effector T cells that have the potential to persist in vivo for years, providing ongoing long-term disease control. In this article, we discuss the clinical biology and treatment of B-ALL with an emphasis on the role of immunotherapy in overcoming the challenges of conventional cytotoxic therapy. As immunotherapy continues to move into the frontline of pediatric B-ALL therapy, we also discuss strategies to address unique side effects associated with these agents and efforts to overcome mechanisms of resistance to immunotherapy.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Imunoterapia , Leucemia de Células B/terapia , Criança , Humanos , Leucemia de Células B/imunologia , Receptores de Antígenos Quiméricos
16.
Water Res ; 170: 115384, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31838364

RESUMO

Past research on AGS (aerobic granular sludge technology) has mainly focused on macro-environment factors, such as settling time, feeding pattern, OLR (organic loading rate), SRT (sludge retention time), among others, and their effects on the granulation process. The biomass granulation process, however, is significantly affected by the micro-environment surrounding these biomass aggregates. In this research, an in silico computational approach was adopted to study the impact of the micro-environment on the biomass granulation process. A 2-D biofilm model based on the cellular automata algorithm and computational fluid dynamics was used to simulate the development of an individual biomass aggregate under specific hydrodynamic and substrate availability conditions. The simulation results indicated that shear and bulk substrate concentration combined to create the optimal conditions for aerobic granule formation. This process can be characterized by the RT (reversed Thiele) modulus value, which is the ratio of the maximum substrate transport over the maximum substrate reaction rate and an indicator of substrate availability. For AGS formation, the RT value should be greater than 0.1. Many common strategies, such as the application of batch reactors, selection for slow-growing microorganism, F/M (food/mass) ratio adjustment, feast and famine condition, and short settling time, for biomass granulation production can be explained by the RT value. The results suggest that rethinking unit process configurations in wastewater treatment facilities will be required to achieve reliable AGS formation.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Biomassa , Reatores Biológicos , Águas Residuárias
17.
Water Res ; 169: 115155, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31671296

RESUMO

Enhancing biogas production, while avoiding inhibition of methanogenesis during co-digestion of grease interceptor waste (GIW), can help water resource recovery facilities reduce their carbon footprint. Here we used pre-adapted and non-adapted digesters to link microbial community structure to digester function. Before disturbance, the pre-adapted and non-adapted digesters showed similar methane production and microbial community diversity but dissimilar community composition. When exposed to an identical disturbance, the pre-adapted digester achieved better performance, while the non-adapted digester was inhibited. When re-exposed to disturbance after recovery, communities and performance of both digesters converged, regardless of the temporal variations. Co-digestion of up to 75% GIW added on a volatile solids (VS) basis was achieved, increasing methane yield by 336% from 0.180 to 0.785 l-methane/g-VS-added, the highest methane yield reported to date for lipid-rich waste. Progressive perturbation substantially enriched fatty acid-degrading Syntrophomonas from less than 1% to 24.6% of total 16S rRNA gene sequences, acetoclastic Methanosaeta from 2.3% to 11.9%, and hydrogenotrophic Methanospirillum from less than 1% to 6.6% in the pre-adapted digester. Specific hydrolytic and fermentative populations also increased. These ecological insights demonstrated how progressive perturbation can be strategically used to influence methanogenic microbiomes and improve co-digestion of GIW.


Assuntos
Metano , Microbiota , Anaerobiose , Reatores Biológicos , RNA Ribossômico 16S , Esgotos
18.
Environ Sci Technol ; 53(19): 11560-11568, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31448917

RESUMO

We developed a new dynamic model to characterize how light and nitrogen regulate the cellular processes of photosynthetic microalgae leading to transient changes in the production of neutral lipids, carbohydrates, and biomass. Our model recapitulated the versatile neutral lipid synthesis pathways via (i) carbon reuse from carbohydrate metabolism under nitrogen sufficiency and (ii) fixed carbon redirection under nitrogen depletion. We also characterized the effects of light adaptation, light inhibition hysteresis, and nitrogen limitation on photosynthetic carbon fixation. The formulated model was calibrated and validated with experimental data of Dunaliella viridis cultivated in a lab-scale photobioreactor (PBR) under various light (low/moderate/high) and nitrogen (sufficient/limited) conditions. We conducted the identifiability, uncertainty, and sensitivity analyses to verify the model reliability using the profile likelihood method, the Markov chain Monte Carlo (MCMC) technique, and the extended Fourier Amplitude Sensitivity Test (eFAST). Our model predictions agreed well with experimental observations and suggested potential model improvement by incorporating a lipid degradation mechanism. The insights from our model-driven analysis helped improve the mechanistic understanding of transient algae growth and bioproducts formation under environmental variations and could be applied to optimize biofuel and biomass production.


Assuntos
Microalgas , Biomassa , Metabolismo dos Lipídeos , Lipídeos , Nitrogênio , Reprodutibilidade dos Testes
19.
J Vis Exp ; (143)2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30774142

RESUMO

Experimental bioreactors, such as those treating wastewater, contain particles whose size and shape are important parameters. For example, the size and shape of activated sludge flocs can indicate the conditions at the microscale, and also directly affect how well the sludge settles in a clarifier. Particle size and shape are both misleadingly 'simple' measurements. Many subtle issues, often unaddressed in informal protocols, can arise when sampling, imaging, and analyzing particles. Sampling methods may be biased or not provide enough statistical power. The samples themselves may be poorly preserved or undergo alteration during immobilization. Images may not be of sufficient quality; overlapping particles, depth of field, magnification level, and various noise can all produce poor results. Poorly specified analysis can introduce bias, such as that produced by manual image thresholding and segmentation. Affordability and throughput are desirable alongside reproducibility. An affordable, high throughput method can enable more frequent particle measurement, producing many images containing thousands of particles. A method that uses inexpensive reagents, a common dissecting microscope, and freely-available open source analysis software allows repeatable, accessible, reproducible, and partially-automated experimental results. Further, the product of such a method can be well-formatted, well-defined, and easily understood by data analysis software, easing both within-lab analyses and data sharing between labs. We present a protocol that details the steps needed to produce such a product, including: sampling, sample preparation and immobilization in agar, digital image acquisition, digital image analysis, and examples of experiment-specific figure generation from the analysis results. We have also included an open-source data analysis pipeline to support this protocol.


Assuntos
Ágar/química , Tamanho da Partícula , Esgotos/análise , Software , Processamento de Imagem Assistida por Computador , Controle de Qualidade , Reprodutibilidade dos Testes
20.
Water Res ; 147: 177-183, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30308376

RESUMO

Biological floc size is an important reactor microenvironment parameter that is often not experimentally controlled due to a lack of suitable methods. Here, we introduce the Couette-Taylor bioreactor (CTB) as an improved tool for controlling biological floc size, specifically as compared with bubble-column sequencing batch reactors (SBRs). A CTB consists of two concentric walls, either of which may be rotated to induce fluid motion. The induced flow produces hydrodynamic shear which is more uniform than that produced through aeration in SBRs. Because hydrodynamic shear is a major parameter controlling floc size, we hypothesized the ability to better control shear rates within a CTB would enable better-controlled floc sizes. To test this hypothesis, we measured the particle size distributions of activated sludge flocs from CTBs with either inner (iCTB) or outer (oCTB) rotating walls as well as SBRs with varying height to diameter ratios (0.5, 1.1, and 9.4). The rotation speed of the CTBs and aeration rate of the SBRs were varied to produce predicted mean shear rates from 25 to 250 s-1. Further, the shear rate distributions for each experiment were estimated using computational fluid dynamics (CFD). In all SBR experiments, the floc distributions did not significantly vary with shear rate or geometry, likely because shear rates (estimated by CFD) differed much less than originally predicted by theory. In the CTB experiments, the mean particle size decreased proportionally with increased hydrodynamic shear, and iCTBs produced particle size distributions with smaller coefficients of variation than oCTBs (0.3 vs. 0.5-0.7, respectively).


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos , Floculação , Tamanho da Partícula , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...