Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 17(3): 512-515, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34380880

RESUMO

Stress response is a cellular widespread mechanism encoded by a common protein program composed by multiple cellular factors that converge in a defense reaction to protect the cell against damage. Among many mechanisms described, heat shock proteins were proposed as universally conserved protective factors in the stress core proteome, coping with different stress stimuli through its canonical role in protein homeostasis. However, emerging evidences reveal non-canonical roles of heat shock proteins relevant for physiological and pathological conditions. Here, we review the implications of inducible heat shock proteins in the central nervous system physiology. In particular, we discuss the relevance of heat shock proteins in the maintenance of synapses, as a balanced protective mechanism in central nervous system development, pathological conditions and aging.

2.
PLoS One ; 15(5): e0233231, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32437379

RESUMO

Environmental changes cause stress, Reactive Oxygen Species and unfolded protein accumulation which hamper synaptic activity and trigger cell death. Heat shock proteins (HSPs) assist protein refolding to maintain proteostasis and cellular integrity. Mechanisms regulating the activity of HSPs include transcription factors and posttranslational modifications that ensure a rapid response. HSPs preserve synaptic function in the nervous system upon environmental insults or pathological factors and contribute to the coupling between environmental cues and neuron control of development. We have performed a biased screening in Drosophila melanogaster searching for synaptogenic modulators among HSPs during development. We explore the role of two small-HSPs (sHSPs), sHSP23 and sHSP26 in synaptogenesis and neuronal activity. Both sHSPs immunoprecipitate together and the equilibrium between both chaperones is required for neuronal development and activity. The molecular mechanism controlling HSP23 and HSP26 accumulation in neurons relies on a novel gene (CG1561), which we name Pinkman (pkm). We propose that sHSPs and Pkm are targets to modulate the impact of stress in neurons and to prevent synapse loss.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Proteínas de Choque Térmico/metabolismo , Animais , Animais Geneticamente Modificados , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes de Insetos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Modelos Neurológicos , Neurogênese/genética , Neurônios/metabolismo , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...