Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Parasitol Parasites Wildl ; 12: 42-45, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32420024

RESUMO

Toxoplasma gondii is a protozoan with worldwide prevalence, known to affect a large variety of warm-blooded hosts. However, its ability to induce long-lasting infections in cold-blooded animals remains unclear. The most likely source of infection is through consumption of meat containing tissue cysts or by ingestion of food or water contaminated with oocysts. The current global climate change trend and the progressive degradation of natural habitats are prone to alter the distribution of ectotherm populations over a short period of time, which may favor contact between these animals and the protozoan. In association, alligator meat is considered a delicacy in many regions and its consumption has been previously related to a diversity of foodborne diseases. In that sense, we proposed in this study to search for specific antibodies against T. gondii in serum samples of two common species of alligators from the Brazilian fauna (Melanosuchus niger and Caimam crocodilus). We obtained the serum samples from 84 alligators from the Araguaia region, which were tested by agglutination assays that do not require species-specific secondary antibodies (Modified Agglutination Test - MAT; Indirect Hemagglutination Assay - IHA). From the 84 samples tested, eight (9.5%) were positive by MAT. From those, seven (87.5% of MAT+, 8.3% of the total) were also positive by IHA, reassuring a probable exposure of these animals to the parasite. Direct parasite detection in muscle fragments of one serologically reactive alligator did not yield positive results. Our results provide serological evidence that Brazilian alligators may be exposed to T. gondii and further studies should be performed to elucidate whether alligators are natural hosts of this ubiquitous protozoan parasite.

2.
Front Immunol ; 8: 245, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28326085

RESUMO

Neospora caninum is an intracellular protozoan parasite that has drawn increasing interest due to its association with worldwide repetitive bovine abortions, which cause billionaire losses to the meat and dairy industries annually. Innate immunity plays an important role in infection control, and N. caninum activates the production of inflammatory mediators through toll-like receptors, NOD-like receptors, and mitogen-activated protein kinase signaling pathways. Advances in the knowledge of initial host-parasite interactions are desirable for the design of control measures against the infection, obliterating its pathogenesis. In that sense, we here aimed to describe the role of the innate C-type lectin receptor Dectin-1 during the infection by N. caninum. With that intent, we observed that the absence of Dectin-1, observed in genetically depleted (Dectin-1-/-) mice or competitively inhibited by an inert agonist [laminarin (LAM)], rescued 50% of the mice infected with lethal doses of N. caninum. Dectin-1-/- and LAM-treated mice also presented a reduction in the parasite load during acute and chronic phases, associated with decreased inflammatory scores in the central nervous system. Among all the cell phenotypes that migrated to the initial site of infection, dendritic cells and macrophages gained subpopulations with high Dectin-1 surface expression. The impairment of the receptor in these cells led to a decreased parasite burden, as well as augmented production of IL-12p40. We also found that Dectin-1+ cells produced less reactive oxygen species (ROS) at the initial site of the infection, while mice deficient in NADPH oxidase isoform 2 (NOX2-/-) were not able to control parasite replication and produce IL-12p40, even upon LAM treatment. Interestingly, the absence of functional Dectin-1 did not alter the susceptibility of mice against closely related Toxoplasma gondii. In conclusion, the gathered data suggest that Dectin-1 is involved in the parasite-induced downmodulation of ROS, and other key molecules triggered for the control of N. caninum infection and are a promising target for future development of protocols intended for intervention against neosporosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...