Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 11313, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35788652

RESUMO

Leishmaniasis is a neglected disease caused by protozoan parasites of the Leishmania genus. Benzylamines are a class of compounds selectively designed to inhibit the squalene synthase (SQS) that catalyzes the first committed reaction on the sterol biosynthesis pathway. Herein, we studied seven new benzylamines (SBC 37-43) against Leishmania amazonensis. After the first screening of cell viability, two inhibitors (SBC 39 and SBC 40) were selected. Against intracellular amastigotes, SBC 39 and SBC 40 presented selectivity indexes of 117.7 and 180, respectively, indicating high selectivity. Analysis of the sterol composition revealed a depletion of endogenous 24-alkylated sterols such as episterol and 5-dehydroepisterol, with a concomitant accumulation of fecosterol, implying a disturbance in cellular lipid content. This result suggests a blockade of de novo sterol synthesis at the level of SQS and C-5 desaturase. Furthermore, physiological analysis and electron microscopy revealed three main alterations: (1) in the mitochondrion; (2) the presence of lipid bodies and autophagosomes; and (3) the appearance of projections in the plasma membrane. In conclusion, our results support the notion that benzylamines have a potent effect against Leishmania amazonensis and should be an exciting novel pharmaceutical lead for developing new chemotherapeutic alternatives to treat leishmaniasis.


Assuntos
Leishmania mexicana , Leishmania , Benzilaminas/farmacologia , Farnesil-Difosfato Farnesiltransferase/metabolismo , Estresse Oxidativo , Esteróis/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-32152072

RESUMO

The new complexes Zn(ITZ)2Cl2 (1) and Zn(ITZ)2(OH)2 (2) were synthetized by a reaction of itraconazole with their respective zinc salts under reflux. These Zn-ITZ complexes were characterized by elemental analyses, molar conductivity, mass spectrometry, 1H and 13C{1H} nuclear magnetic resonance, and UV-vis and infrared spectroscopies. The antiparasitic and antifungal activity of Zn-ITZ complexes was evaluated against three protozoans of medical importance, namely, Leishmania amazonensis, Trypanosoma cruzi, and Toxoplasma gondii, and two fungi, namely, Sporothrix brasiliensis and Sporothrix schenckii The Zn-ITZ complexes exhibited a broad spectrum of action, with antiparasitic and antifungal activity in low concentrations. The strategy of combining zinc with ITZ was efficient to enhance ITZ activity since Zn-ITZ-complexes were more active than the azole alone. This study opens perspectives for future applications of these Zn-ITZ complexes in the treatment of parasitic diseases and sporotrichosis.


Assuntos
Antifúngicos/farmacologia , Antiparasitários/farmacologia , Itraconazol/farmacologia , Zinco/farmacologia , Leishmania/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Testes de Sensibilidade Parasitária , Sporothrix/efeitos dos fármacos , Toxoplasma/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos
3.
Apoptosis ; 22(9): 1169-1188, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28685254

RESUMO

Treatment of leishmaniasis involves the use of antimonials, miltefosine, amphotericin B or pentamidine. However, the side effects of these drugs and the reports of drug-resistant parasites demonstrate the need for new treatments that are safer and more efficacious. Histone deacetylase inhibitors are a new class of compounds with potential to treat leishmaniasis. Herein, we evaluated the effects of KH-TFMDI, a novel histone deacetylase inhibitor, on Leishmania amazonensis promastigotes and intracellular amastigotes. The IC50 values of this compound for promastigotes and intracellular amastigotes were 1.976 and 1.148 µM, respectively, after 72 h of treatment. Microscopic analyses revealed that promastigotes became elongated and thinner in response to KH-TFMDI, indicating changes in cytoskeleton organization. Immunofluorescence microscopy, western blotting and flow cytometry using an anti-acetylated tubulin antibody revealed an increase in the expression of acetylated tubulin. Furthermore, transmission electron microscopy revealed several ultrastructural changes, such as (a) mitochondrial swelling, followed by the formation of many vesicles inside the matrix; (b) presence of lipid bodies randomly distributed through the cytoplasm; (c) abnormal chromatin condensation; and (d) formation of blebs on the plasma membrane. Physiological studies for mitochondrial function, flow cytometry with propidium iodide and TUNEL assay confirmed the alterations in the mitochondrial metabolism, cell cycle, and DNA fragmentation, respectively, which could result to cell death by mechanisms related to apoptosis-like. All these together indicate that histone deacetylases are promising targets for the development of new drugs to treat Leishmania, and KH-TFMDI is a promising drug candidate that should be tested in vivo.


Assuntos
Compostos de Benzilideno/farmacologia , Morte Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Indóis/farmacologia , Leishmania/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Sirtuínas/antagonistas & inibidores , Animais , Antiparasitários/farmacologia , Antiparasitários/toxicidade , Apoptose/efeitos dos fármacos , Compostos de Benzilideno/toxicidade , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/metabolismo , Inibidores de Histona Desacetilases/toxicidade , Indóis/toxicidade , Concentração Inibidora 50 , Leishmania/citologia , Leishmania/crescimento & desenvolvimento , Leishmania/ultraestrutura , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Estresse Oxidativo/efeitos dos fármacos
4.
Biochem Pharmacol ; 138: 19-30, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28483460

RESUMO

Indole alkaloids possess a large spectrum of biological activities including anti-protozoal action. Here we report for the first time that voacamine, isolated from the plant Tabernaemontana coronaria, is an antiprotozoal agent effective against a large array of trypanosomatid parasites including Indian strain of Leishmania donovani and Brazilian strains of Leishmania amazonensis and Trypanosoma cruzi. It inhibits the relaxation activity of topoisomerase IB of L. donovani (LdTop1B) and stabilizes the cleavable complex. Voacamine is probably the first LdTop1B-specific poison to act uncompetitively. It has no impact on human topoisomerase I and II up to 200µM concentrations. The study also provides a thorough insight into ultrastructural alterations induced in three kinetoplastid parasites by a specific inhibitor of LdTop1B. Voacamine is also effective against intracellular amastigotes of different drug unresponsive field isolates of Leishmania donovani obtained from endemic zones of India severely affected with visceral leishmaniasis. Most importantly, this is the first report demonstrating the efficacy of a compound to reduce the burden of drug resistant parasites, unresponsive to SAG, amphotericin B and miltefosine, in experimental BALB/c mice model of visceral leishmaniasis. The findings cumulatively provide a strong evidence that voacamine can be a promising drug candidate against trypanosomatid infections.


Assuntos
Antiprotozoários/farmacologia , DNA Topoisomerases Tipo I/metabolismo , Ibogaína/análogos & derivados , Leishmania donovani/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Inibidores da Topoisomerase I/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/isolamento & purificação , Antiprotozoários/uso terapêutico , Forma Celular/efeitos dos fármacos , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , Relação Dose-Resposta a Droga , Resistência a Múltiplos Medicamentos , Estabilidade Enzimática/efeitos dos fármacos , Feminino , Ibogaína/administração & dosagem , Ibogaína/isolamento & purificação , Ibogaína/farmacologia , Ibogaína/uso terapêutico , Leishmania donovani/enzimologia , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/ultraestrutura , Leishmania mexicana/enzimologia , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/ultraestrutura , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Dose Letal Mediana , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Casca de Planta/química , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tabernaemontana/química , Inibidores da Topoisomerase I/administração & dosagem , Inibidores da Topoisomerase I/isolamento & purificação , Inibidores da Topoisomerase I/uso terapêutico , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/ultraestrutura
5.
Curr Med Chem ; 22(18): 2186-98, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25787966

RESUMO

Sterols play an essential role in the physiology of eukaryotic cells; they play a pivotal role in the normal structure and function of cell membranes and also act as precursors for the synthesis of several different molecules like steroid hormones. Trypanosomatids and fungi have an essential requirement of ergosterol and other 24-alkyl sterols, which are absent in mammalian cells, for their survival and growth. At least 20 metabolic steps are necessary to synthesize sterols as cholesterol and ergosterol with the involvement of different specific enzymes. Some enzymes have been studied in detail in order to find new inhibitors that are able to abolish the parasite growth in vitro; besides, they also promote the curative efficacy in murine models of infection, thus opening new possibilities to introduce new drugs for the treatment of leishmaniasis and Chagas' disease. Sterols biosynthesis inhibitors (SBIs) can potentially be used as a chemotherapeutic agent against trypanosomatids. Actually, there are several drugs that interfere with the SB pathway, and some of them are already in clinical trials, such as posaconazole, and a new pro-drug, the ravuconazole. Furthermore, new approaches are being used, such as the combination of drugs, to reduce the resistance and minimize toxic effects. In this review, we discuss the main steps of the SB pathway, showing each enzyme involved in the steps, as well as the antiproliferative, physiological, biochemical, and ultrastructural effects of the several known inhibitors.


Assuntos
Antineoplásicos/farmacologia , Antiprotozoários/farmacologia , Esteróis/farmacologia , Trypanosomatina/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/metabolismo , Antiprotozoários/química , Antiprotozoários/metabolismo , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Parasitária , Esteróis/biossíntese , Esteróis/química , Trypanosomatina/citologia
6.
PLoS One ; 8(12): e83247, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376670

RESUMO

Leishmaniasis, caused by protozoan parasites of the Leishmania genus, is one of the most prevalent neglected tropical diseases. It is endemic in 98 countries, causing considerable morbidity and mortality. Pentavalent antimonials are the first line of treatment for leishmaniasis except in India. In resistant cases, miltefosine, amphotericin B and pentamidine are used. These treatments are unsatisfactory due to toxicity, limited efficacy, high cost and difficult administration. Thus, there is an urgent need to develop drugs that are efficacious, safe, and more accessible to patients. Trypanosomatids, including Leishmania spp. and Trypanosoma cruzi, have an essential requirement for ergosterol and other 24-alkyl sterols, which are absent in mammalian cells. Inhibition of ergosterol biosynthesis is increasingly recognized as a promising target for the development of new chemotherapeutic agents. The aim of this work was to investigate the antiproliferative, physiological and ultrastructural effects against Leishmania amazonensis of itraconazole (ITZ) and posaconazole (POSA), two azole antifungal agents that inhibit sterol C14α-demethylase (CYP51). Antiproliferative studies demonstrated potent activity of POSA and ITZ: for promastigotes, the IC50 values were 2.74 µM and 0.44 µM for POSA and ITZ, respectively, and for intracellular amastigotes, the corresponding values were 1.63 µM and 0.08 µM, for both stages after 72 h of treatment. Physiological studies revealed that both inhibitors induced a collapse of the mitochondrial membrane potential (ΔΨm), which was consistent with ultrastructural alterations in the mitochondrion. Intense mitochondrial swelling, disorganization and rupture of mitochondrial membranes were observed by transmission electron microscopy. In addition, accumulation of lipid bodies, appearance of autophagosome-like structures and alterations in the kinetoplast were also observed. In conclusion, our results indicate that ITZ and POSA are potent inhibitors of L. amazonensis and suggest that these drugs could represent novel therapies for the treatment of leishmaniasis, either alone or in combination with other agents.


Assuntos
Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Itraconazol/farmacologia , Leishmania mexicana/efeitos dos fármacos , Estágios do Ciclo de Vida/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Triazóis/farmacologia , Antifúngicos/farmacologia , Reposicionamento de Medicamentos , Concentração Inibidora 50 , Leishmania mexicana/enzimologia , Leishmania mexicana/ultraestrutura , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Esterol 14-Desmetilase/metabolismo
7.
Mol Biol Int ; 2011: 876021, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22091415

RESUMO

Amiodarone (AMIO), the most frequently antiarrhythmic drug used for the symptomatic treatment of chronic Chagas' disease patients with cardiac compromise, has recently been shown to have also specific activity against fungi, Trypanosoma cruzi and Leishmania. In this work, we characterized the effects of AMIO on proliferation, mitochondrial physiology, and ultrastructure of Leishmania amazonensis promastigotes and intracellular amastigotes. The IC(50) values were 4.21 and 0.46 µM against promastigotes and intracellular amastigotes, respectively, indicating high selectivity for the clinically relevant stage. We also found that treatment with AMIO leads to a collapse of the mitochondrial membrane potential (ΔΨm) and to an increase in the production of reactive oxygen species, in a dose-dependent manner. Fluorescence microscopy of cells labeled with JC-1, a marker for mitochondrial energization, and transmission electron microscopy confirmed severe alterations of the mitochondrion, including intense swelling and modification of its membranes. Other ultrastructural alterations included (1) presence of numerous lipid-storage bodies, (2) presence of large autophagosomes containing part of the cytoplasm and membrane profiles, sometimes in close association with the mitochondrion and endoplasmic reticulum, and (3) alterations in the chromatin condensation and plasma membrane integrity. Taken together, our results indicate that AMIO is a potent inhibitor of L. amazonensis growth, acting through irreversible alterations in the mitochondrial structure and function, which lead to cell death by necrosis, apoptosis and/or autophagy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...