Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 470: 115048, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38761857

RESUMO

BACKGROUND: Obesity is a worldwide public health problem associated with cognitive and mental health problems in both humans and rats. Studies assessing the effect of fiber supplementation on behavioral deficits and oxidative stress caused by high-fat diet (HFD) consumption in female rats are still scarce. We hypothesized that HFD consumption would lead to anxiety-related behavior and hepatic oxidative stress and that inulin would protect against these changes. We analyzed the impact of HFD-induced obesity combined with fiber supplementation (inulin) on anxiety-related defensive behavior and hepatic oxidative stress. RESULTS: Female rats were fed a high-fat diet (HFD; 45%) for nine weeks to induce obesity. The administration of inulin was found to decrease the adiposity index in both the control and obese groups. The consumption of a HFD combined with inulin supplementation resulted in a reduction in both CAT activity and carbonylated protein levels, leading to a shift in the hepatic redox balance. Interestingly, the behavioral data were conflicting. Specifically, animals that consumed a high-fat diet and received inulin showed signs of impaired learning and memory caused by obesity. The HFD did not impact anxiety-related behaviors in the female rats. However, inulin appears to have an anxiolytic effect, in the ETM, when associated with the HFD. On the other hand, inulin appears to have affected the locomotor activity in the HFD in both open field and light-dark box. CONCLUSION: Our results show that consumption of a HFD induced obesity in female rats, similar to males. However, HFD consumption did not cause a consistent increase in anxiety-related behaviors in female Wistar rats. Treatment with inulin at the dosage used did not exert consistent changes on the behavior of the animals, but attenuated the abdominal WAT expansion and the hepatic redox imbalance elicited by high-fat diet-induced obesity.


Assuntos
Ansiedade , Dieta Hiperlipídica , Inulina , Fígado , Obesidade , Estresse Oxidativo , Ratos Wistar , Animais , Feminino , Inulina/farmacologia , Inulina/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Ansiedade/metabolismo , Obesidade/metabolismo , Ratos , Suplementos Nutricionais , Fibras na Dieta/farmacologia , Fibras na Dieta/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Modelos Animais de Doenças
2.
Respir Physiol Neurobiol ; 323: 104240, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38417564

RESUMO

In this study, we hypothesized that long-term administration of hesperidin can modulate the inflammatory response and oxidative stress in animals submitted to mechanical ventilation (MV). Twenty-five C57BL/6 male mice were divided into 5 groups: control, MV, animals receiving hesperidin in three doses 10, 25 and 50 mg/kg. The animals received the doses of hesperidin for 30 days via orogastric gavage, and at the end of the period the animals were submitted to MV. In animals submitted to MV, increased lymphocyte, neutrophil and monocyte/macrophage cell counts were observed in the blood and airways. Associated to this, MV promoted an increase in inflammatory cytokine levels such as CCL2, IL-12 and TNFα. The daily administration of hesperidin in the three doses prevented the effects caused by MV, which was observed by a lower influx of inflammatory cells into the airways, a reduction in inflammatory markers and less oxidative damage.


Assuntos
Hesperidina , Pneumonia , Camundongos , Animais , Masculino , Hesperidina/farmacologia , Hesperidina/uso terapêutico , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Estresse Oxidativo , Pneumonia/prevenção & controle , Inflamação/prevenção & controle
3.
Biomed Res Int ; 2023: 4499407, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854793

RESUMO

The present study is aimed at investigating the long-term effects of the aluminum hydroxide administration in the small intestine, lung, liver, and kidney of male BALB/c mice. The mice received via orogastric gavage phosphate buffered or 10 mg/kg aluminum hydroxide 3 times a week for 6 months. Administration of aluminum hydroxide decreased hemoglobin, hematocrit, and erythrocyte. In the blood, kidney and liver function markers were evaluated, and long-term administration of aluminum hydroxide led to an increase in AST levels and a decrease in urea levels. The animals exposed to aluminum showed higher lipid and protein oxidation in all the organs analyzed. In relation to the enzymes involved in antioxidant defense, the lungs showed lower superoxide dismutase (SOD) and catalase activity and a lower reduced and oxidized glutathione (GSH/GSSG) ratio. In the liver, aluminum administration led to a decrease in catalase activity and the GSH/GSSG ratio. Lower catalase activity was observed in the small intestine, as well as in the lungs and liver. In addition to alterations in antioxidant defense, increased levels of the chemokine CCL-2 were observed in the lungs, lower levels of IL-10 in the liver and small intestine, and decreased levels of IL-6 in the intestine of the animals that received aluminum hydroxide for 6 months. Long-term exposure to aluminum promoted steatosis in the liver. In the kidneys, mice treated with aluminum presented a decreased glomerular density than in the naive control group. In the small intestine, exposure caused villi shortening. Our results indicate that long-term oral administration of aluminum hydroxide provokes systemic histological damage, inflammation, and redox imbalance.


Assuntos
Antioxidantes , Glutationa , Camundongos , Masculino , Animais , Antioxidantes/farmacologia , Dissulfeto de Glutationa/metabolismo , Glutationa/metabolismo , Catalase/metabolismo , Hidróxido de Alumínio/farmacologia , Camundongos Endogâmicos BALB C , Alumínio/farmacologia , Oxirredução , Superóxido Dismutase/metabolismo , Fígado/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Estresse Oxidativo
4.
Biomed Res Int ; 2022: 9938179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36193298

RESUMO

Cigarette smoking throughout life causes serious health issues in the lungs. The electronic cigarette (E-Cig) use increased, since it was first introduced in the world. This research work compared the short-term exposure consequences to e-cigarette vapor and cigarette smoke in male mice. Forty-five C57BL/6 mice were randomized into control (C) in an ambient air exposition cigarette smoke (CS) and aerosol electronic cigarette (EC), both were exposed to 120 puffs, 3 times/day during five days. Then, in the experimental protocol, the euthanized mice had their tissues removed for analysis. Our study showed that CS and EC resulted in higher cell influx into the airways, and an increase in macrophage counts in CS (209.25 ± 7.41) and EC (220.32 ± 8.15) when compared to C (108.40 ± 4.49) (p < 0.0001). The CS (1.92 ± 0.23) displayed a higher pulmonary lipid peroxidation as opposed to C (0.93 ± 0.06) and EC (1.23 ± 0.17) (p < 0.05). The EC (282.30 ± 25.68) and CS (368.50 ± 38.05) promoted increased levels of interleukin 17 when compared to C (177.20 ± 10.49) (p < 0.05). The EC developed shifts in lung histoarchitecture, characterized by a higher volume density in the alveolar air space (60.21; 55.00-65.83) related to C (51.25; 18.75-68.75) and CS (50.26; 43.75-62.08) (p =0.002). The EC (185.6 ± 9.01) presented a higher respiratory rate related to CS (133.6 ± 10.2) (p < 0.002). Therefore, our findings demonstrated that the short-term exposure to e-cig promoted more acute inflammation comparing to cigarette smoke in the ventilatory parameters of the animals.


Assuntos
Fumar Cigarros , Vapor do Cigarro Eletrônico , Sistemas Eletrônicos de Liberação de Nicotina , Aerossóis , Animais , Modelos Animais de Doenças , Interleucina-17 , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nicotiana
5.
Nutrition ; 101: 111682, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35660498

RESUMO

OBJECTIVES: The present study aimed to evaluate the effects of maternal protein restriction during pregnancy on the lungs of 1-d and 31-d old offspring of C57BL/6 mice. METHODS: The C57BL/6 mice (8-10 wk) were used for breeding. After pregnancy confirmation, female mice were randomly divided into a control group (CG) receiving a standard diet (22% protein) and a protein-restriction group (PRG) receiving a low-protein diet (6% protein). In the low-protein diet, protein was replaced by carbohydrate. After parturition, female mice that received the low-protein diet were fed the standard diet. Male offspring were euthanized 1 d and 31 d after birth for subsequent analysis. We evaluated the effects of a protein-restricted diet during gestation in pulmonary organogenesis, lung oxidative stress, and pulmonary inflammatory response of the offspring. RESULTS: PRG mice 1 d after birth showed lower body and lung mass, length, relative mass, lung density, and erythrocyte count compared with CG mice. There was an increase in alveolar airspace density and a higher mean linear intercept (Lm), greater oxidative damage, and inflammation in PRG mice compared with CG mice. At 31 d after birth, PRG mice had lower body mass, length, and lung mass values compared with CG mice. PRG mice showed greater recruitment of inflammatory cells to the airways. In addition, there was increased collagen deposition in the lungs, altered inflammatory mediators, and greater oxidative damage compared with CG mice. CONCLUSIONS: Protein restriction during pregnancy reduces the body weight of offspring and promotes inflammation and oxidative stress, resulting in a simplification of the lung structure.


Assuntos
Dieta com Restrição de Proteínas , Efeitos Tardios da Exposição Pré-Natal , Animais , Dieta com Restrição de Proteínas/efeitos adversos , Feminino , Humanos , Inflamação , Pulmão , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Camundongos , Camundongos Endogâmicos C57BL , Organogênese , Estresse Oxidativo , Gravidez
6.
Respir Physiol Neurobiol ; 302: 103911, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35430285

RESUMO

Mechanical ventilation is an essential supportive therapy in the treatment of critical patients, and it aims to maintain adequate gas exchange; however, it can also contribute to inflammation and oxidative stress, thus leading to lung injury. We tested the hypothesis that exogenous surfactant administration will be protective against ventilator-induced lung injury in adult healthy Wistar rats both because of its anti-inflammatory properties as well as its role in preventing alveolar collapse at end-expiration. Thus, the effect of intranasal instillation of a bovine exogenous surfactant was tested in Wistar rats submitted to mechanical ventilation. The animals were divided into four groups: (1) CONTROL; (2) SURFACTANT; (3) Mechanical ventilation (MV); (4) MV with pre-treatment with surfactant (MVSURFACTANT). The MV and MVSURFACTANT were submitted to MV with high tidal volume (12 mL/kg) for 1 h. After the experimental protocol, all animals were euthanized and the arterial blood, bronchoalveolar lavage fluid and lungs were collected for biochemical, immunoenzymatic assay, arterial blood gases, and morphometric analyzes. The Wistar rats that received exogenous surfactant (Survanta®) by intranasal instillation before MV demonstrated reduced levels of leukocytes, inflammatory biomarkers such as CCL2, IL-1, IL-6 and TNF-α. Furthermore, it prevented oxidative damage by reducing lipid peroxidation and protein carbonylation as well as histological pattern changes of pulmonary parenchyma. Our data indicate that exogenous surfactant attenuated lung inflammation and redox imbalance induced by mechanical ventilation in healthy adult rats suggesting a preventive effect on ventilator-induced lung injury.


Assuntos
Surfactantes Pulmonares , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Líquido da Lavagem Broncoalveolar/química , Bovinos , Humanos , Pulmão , Surfactantes Pulmonares/metabolismo , Surfactantes Pulmonares/farmacologia , Ratos , Ratos Wistar , Respiração Artificial , Tensoativos/farmacologia , Tensoativos/uso terapêutico , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle
7.
Antioxidants (Basel) ; 11(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35204064

RESUMO

Chronic obstructive pulmonary disease (COPD) is the major cause of morbidity and mortality worldwide, and cigarette smoke is a key factor in the development of COPD. Thus, the development of effective therapies to prevent the advancement of COPD has become increasingly essential. We hypothesized that quercetin protects lungs in mice exposed to long-term cigarette smoke. Thirty-five C57BL/6 mice were exposed to cigarette smoke (12 cigarettes per day) for 60 days and pretreated with 10 mg/kg/day of quercetin via orogastric gavage. After the experimental protocol, the animals were euthanized and samples were collected for histopathological, antioxidant defense, oxidative stress and inflammatory analysis. The animals exposed to cigarette smoke showed an increase in respiratory rate and hematological parameters, cell influx into the airways, oxidative damage and inflammatory mediators, besides presenting with alterations in the pulmonary histoarchitecture. The animals receiving 10 mg/kg/day of quercetin that were exposed to cigarette smoke presented a reduction in cellular influx, less oxidative damage, reduction in cytokine levels, improvement in the histological pattern and improvement in pulmonary emphysema compared to the group that was only exposed to cigarette smoke. These results suggest that quercetin may be an agent in preventing pulmonary emphysema induced by cigarette smoke.

8.
Free Radic Biol Med ; 180: 253-262, 2022 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35092853

RESUMO

Mechanical ventilation (MV) is a tool used in critical patient care. However, it can trigger inflammatory and oxidative processes capable of causing or aggravating lung injuries, which is known as ventilator-induced lung injury (VILI). Hesperidin is a flavonoid with antioxidant and anti-inflammatory properties in various diseases. The role of hesperidin in the process triggered by MV is poorly studied. Thus, we hypothesize hesperidin could protect the lung of mice submitted to mechanical ventilation. For that, we evaluated cell viability and reactive oxygen species (ROS) formation in macrophages using different hesperidin concentrations. We observed hesperidin did not reduce cell viability, however; it attenuated the production of intracellular ROS in cells stimulated with lipopolysaccharide (LPS). We further evaluated the effects of hesperidin in vivo in animals submitted to MV. In the bronchoalveolar lavage fluid, there were higher levels of macrophage, lymphocyte and neutrophil counts in animals submitted to MV, indicating an inflammatory process. In the lung tissue, MV induced oxidative damage and increased myeloperoxidase activity, though the antioxidant enzyme activity decreased. MV also induced the production of the inflammatory mediators CCL-2, TNF-α and IL-12. Pretreatment with hesperidin resulted in less recruitment of inflammatory cells to the airways and less oxidative damage. Also, it reduced the formation of CCL-2 and IL-12. Our results show pretreatment with hesperidin can protect the lungs of mice submitted to mechanical ventilation by modulating the inflammatory response and redox imbalance and may act to prevent MV injury.


Assuntos
Hesperidina , Pneumonia , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Líquido da Lavagem Broncoalveolar , Hesperidina/farmacologia , Humanos , Pulmão , Camundongos , Modelos Teóricos , Pneumonia/tratamento farmacológico , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle
9.
Oxid Med Cell Longev ; 2021: 5196896, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745417

RESUMO

Mechanical ventilation (MV) is essential for the treatment of critical patients since it may provide a desired gas exchange. However, MV itself can trigger ventilator-associated lung injury in patients. We hypothesized that the mechanisms of lung injury through redox imbalance might also be associated with pulmonary inflammatory status, which has not been so far described. We tested it by delivering different tidal volumes to normal lungs undergoing MV. Healthy Wistar rats were divided into spontaneously breathing animals (control group, CG), and rats were submitted to MV (controlled ventilation mode) with tidal volumes of 4 mL/kg (MVG4), 8 mL/kg (MVG8), or 12 mL/kg (MVG12), zero end-expiratory pressure (ZEEP), and normoxia (FiO2 = 21%) for 1 hour. After ventilation and euthanasia, arterial blood, bronchoalveolar lavage fluid (BALF), and lungs were collected for subsequent analysis. MVG12 presented lower PaCO2 and bicarbonate content in the arterial blood than CG, MVG4, and MVG8. Neutrophil influx in BALF and MPO activity in lung tissue homogenate were significantly higher in MVG12 than in CG. The levels of CCL5, TNF-α, IL-1, and IL-6 in lung tissue homogenate were higher in MVG12 than in CG and MVG4. In the lung parenchyma, the lipid peroxidation was more important in MVG12 than in CG, MVG4, and MVG8, while there was more protein oxidation in MVG12 than in CG and MVG4. The stereological analysis confirmed the histological pulmonary changes in MVG12. The association of controlled mode ventilation and high tidal volume, without PEEP and normoxia, impaired pulmonary histoarchitecture and triggered redox imbalance and lung inflammation in healthy adult rats.


Assuntos
Lesão Pulmonar/patologia , Pneumonia/patologia , Respiração Artificial/efeitos adversos , Animais , Citocinas/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Masculino , Oxirredução , Pneumonia/etiologia , Pneumonia/metabolismo , Ratos , Ratos Wistar , Volume de Ventilação Pulmonar
10.
Front Pharmacol ; 12: 557962, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33762930

RESUMO

The presence of eosinophils and neutrophils in the lungs of asthmatic patients is associated with the severity of the disease and resistance to corticosteroids. Thus, defective resolution of eosinophilic and neutrophilic inflammation is importantly related to exacerbation of asthma. In this study, we investigated a therapeutic action of angiotensin-(1-7) (Ang-(1-7)) in a model of asthma induced by ovalbumin (OVA) and lipopolysaccharide (LPS). Balb-c mice were sensitized and challenged with OVA. Twenty-three hours after the last OVA challenge, experimental groups received LPS, and 1 h and 7 h later, mice were treated with oral formulation of Ang-(1-7). On the next day, 45 h after the last challenge with OVA, mice were subjected to a test of motor and exploratory behavior; 3 h later, lung function was evaluated, and bronchoalveolar lavage fluid (BALF) and lungs were collected. Motor and exploratory activities were lower in OVA + LPS-challenged mice. Treatment with Ang-(1-7) improved these behaviors, normalized lung function, and reduced eosinophil, neutrophil, myeloperoxidase (MPO), eosinophilic peroxidase (EPO), and ERK1/2 phosphorylation (p-ERK1/2) in the lungs. In addition, Ang-(1-7) decreased the deposition of mucus and extracellular matrix in the airways. These results extended those of previous studies by demonstrating that oral administration of Ang-(1-7) at the peak of pulmonary inflammation can be valuable for the treatment of neutrophil- and eosinophil-mediated asthma. Therefore, these findings potentially provide a new drug to reverse the natural history of the disease, unlike the current standards of care that manage the disease symptoms at best.

11.
Respir Physiol Neurobiol ; 284: 103583, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33202295

RESUMO

This study aimed to analyze the effects of volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV) modes in female Wistar rats. 18 Wistar female adult rats were divided into three groups: control (CG), pressure-controlled ventilation (PCVG), and volume-controlled ventilation (VCVG). PCVG and VCVG were submitted to MV for one hour with a tidal volume (TV) of 8 mL/Kg, respiratory rate of 80 breaths/min, and positive end-expiratory pressure of 0 cmH2O. At the end of the experiment, all animals were euthanized. The neutrophils and lymphocytes influx to lung were higher in VCVG and PCVG compared to CG. The activities of superoxide dismutase, catalase and myeloperoxidase were higher in PCVG compared to CG. There was an increase in lipid peroxidation and protein oxidation in PCVG compared to CG. The levels of CCL3 and CCL5 were higher in PCVG compared to CG. In conclusions, the PCV mode promoted structural changes in the lung parenchyma, redox imbalance and inflammation in healthy adult female rats submitted to MV.


Assuntos
Citocinas , Inflamação , Pulmão , Estresse Oxidativo , Respiração Artificial/efeitos adversos , Animais , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Inflamação/etiologia , Inflamação/imunologia , Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Ratos , Ratos Wistar
12.
Exp Biol Med (Maywood) ; 245(15): 1404-1413, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640895

RESUMO

Mechanical ventilation (MV) is a tool used for the treatment of patients with acute or chronic respiratory failure. However, MV is a non-physiological resource, and it can cause metabolic disorders such as release of pro-inflammatory cytokines and production of reactive oxygen species. In clinical setting, maneuvers such as sigh, are used to protect the lungs. Thus, this study aimed to evaluate the effects of sigh on oxidative stress and lung inflammation in healthy adult Wistar rats submitted to MV. Male Wistar rats were divided into four groups: control (CG), mechanical ventilation (MVG), MV set at 20 sighs/h (MVG20), and MV set at 40 sighs/h (MVG40). The MVG, MVG20, and MVG40 were submitted to MV for 1 h. After the protocol, all animals were euthanized and the blood, bronchoalveolar lavage fluid, and lungs were collected for subsequent analysis. In the arterial blood, MVG40 presented higher partial pressure of oxygen and lower partial pressure of carbon dioxide compared to control. The levels of bicarbonate in MVG20 were lower compared to CG. The neutrophil influx in bronchoalveolar lavage fluid was higher in the MVG compared to CG and MVG40. In the lung parenchyma, the lipid peroxidation was higher in MVG compared to CG, MVG20, and MVG40. Superoxide dismutase and catalase activity were higher in MVG compared to CG, MVG20, and MVG40. The levels of IL-1, IL-6, and TNF in the lung homogenate were higher in MVG compared to CG, MVG20, and MVG40. The use of sigh plays a protective role as it reduced redox imbalance and pulmonary inflammation caused by MV.


Assuntos
Envelhecimento/patologia , Pulmão/fisiopatologia , Respiração Artificial , Animais , Biomarcadores/metabolismo , Gasometria , Líquido da Lavagem Broncoalveolar/citologia , Hemodinâmica , Mediadores da Inflamação/metabolismo , Pulmão/patologia , Masculino , Estresse Oxidativo , Ratos Wistar , Testes de Função Respiratória
13.
COPD ; 17(2): 205-214, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32237913

RESUMO

Cigarette smoke is highly toxic and is a major risk factor for airway inflammation, oxidative stress, and decline in lung function-the starting points for chronic obstructive pulmonary disease. Quercetin is a potent dietary antioxidant that displays anti-inflammatory activities. The goal of this study was to evaluate the effects of quercetin on reducing the redox imbalance and inflammation induced by short-term cigarette smoke exposure. In vitro, 25 and 50 µM quercetin attenuated the effects of cigarette smoke extract (increased generation of reactive oxygen species and nitric oxide) on J774A.1 cells (macrophages). We further examined the effects of quercetin in vivo. Male C57Bl/6 mice that received 10 mg/kg/day of quercetin via orogastric gavage before exposure to five days of cigarette smoke demonstrated reduced levels of leukocyte, oxidative stress, histological pattern changes of pulmonary parenchyma, and lung function alterations compared to the group that did not receive quercetin. These results suggest that quercetin may be an effective adjuvant for treating the effects of cigarette smoke exposure.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , Fumaça/efeitos adversos , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Antioxidantes/uso terapêutico , Líquido da Lavagem Broncoalveolar/citologia , Catalase/metabolismo , Linhagem Celular , Misturas Complexas/efeitos adversos , Inflamação/tratamento farmacológico , Contagem de Leucócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Tecido Parenquimatoso/patologia , Quercetina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Produtos do Tabaco
14.
Inflammopharmacology ; 27(2): 397-408, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29372359

RESUMO

BACKGROUND: Annona crassiflora Mart., popularly known as "Araticum", is a native tree of the Brazilian Cerrado used in folk medicine for treatment of pain and inflammatory diseases. We proposed to analyze analgesic and anti-inflammatory properties of the filtrate (F1) and the precipitate (F2) of the hydroalcoholic fraction from the leaves of Annona crassiflora Mart. in mice. MATERIALS AND METHODS: Swiss mice were submitted to formalin-induced nociception test and tail-flick reflex test, to assess antinociceptive properties, and to the rota-rod test, for motor performance analyses. To evaluate anti-inflammatory properties, F1 and F2 were orally administered 1 h prior to the intrathoracic injection of carrageenan, zymosan, LPS, CXCL8, or vehicle in Balb/c mice and neutrophil infiltration was evaluated 4 h after injection. RESULTS: F1 and F2 reduced the licking time in the second phase of formalin-induced nociception test, but only F2 showed a dose-dependent response. Neither F1 nor F2 reduced the latency time in the tail-flick reflex test. In addition, motor performance alteration was not observed in F1- or F2-treated mice. F2 treatment significantly inhibited the neutrophilia induced by carrageenan, LPS, or CXCL8, but not zymosan. CONCLUSIONS: The experimental data demonstrated that hydroalcoholic fractions of Annona crassiflora Mart. leaves have remarkable anti-inflammatory and antinociceptive activities.


Assuntos
Analgésicos/farmacologia , Annona/química , Anti-Inflamatórios/farmacologia , Medição da Dor/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Animais , Carragenina/farmacologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C
15.
J Nat Med ; 70(4): 760-8, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27278224

RESUMO

An ethnopharmacological survey indicates that the genus Byrsonima has some medicinal species that are commonly found in the Brazilian Cerrado and has been used as an anti-inflammatory and for gastroduodenal disorders. The aim of this study was to evaluate the anti-inflammatory and antioxidant activity along with qualitative chemical characterization of the methanolic extract of the leaves of Byrsonima verbascifolia (BvME) obtained by exhaustive percolation. The data from the chemical analyses by liquid chromatography-mass spectrometry led to tentative identification of 42 compounds belonging to proanthocyanidins, galloyl quinic acid derivatives, flavonoids, and triterpene glycoside derivatives. BvME contain flavonoids and show an antioxidative activity. The methanolic extract administered intraperitoneally at doses of 50, 100, or 300 mg/kg showed a significant reduction in paw edema and modulated the neutrophil influx in a mouse model. Furthermore, the anti-edematogenic activity of the extract provided in smaller doses (12.5 and 25 mg/kg) was also demonstrated in a mouse paw edema model. The extract inhibited NO production by macrophages induced by lipopolysaccharide. We presume that the anti-inflammatory effects of BvME are due to a combination of compounds present in B. verbascifolia, including catechins (procyanidins), flavonoids, and triterpene glycosides and that these anti-inflammatory actions should be mediated, at least partly, through the inhibition of NO production. This study supports and validates the ethnopharmacological uses of B. verbascifolia as an anti-inflammatory.


Assuntos
Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Malpighiaceae/química , Óxido Nítrico/biossíntese , Fitoterapia , Extratos Vegetais/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Brasil , Catequina/farmacologia , Catequina/uso terapêutico , Modelos Animais de Doenças , Edema , Feminino , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Triterpenos/farmacologia , Triterpenos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...