Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Peptides ; 31(12): 2289-93, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20869417

RESUMO

G protein-coupled receptors (GPCRs) are seven transmembrane α-helical (7TM) integral membrane proteins that play a central role in both cell signaling and in the action of many pharmaceuticals. The crystal structures of several Family A GPCRs have shown the presence of a disulfide bond linking transmembrane helix 3 (TM3) to the second extracellular loop (ECL2), enabling ECL2 to stabilize and contribute to the ligand binding pocket. Family B GPCRs share no significant sequence identity with those in Family A but nevertheless share two conserved cysteines in topologically equivalent positions. Since there are no available crystal structures for the 7TM domain of any Family B GPCR, we used mutagenesis alongside pharmacological analysis to investigate the role of ECL2 and the conserved cysteine residues. We mutated Cys-226, at the extracellular end of TM3 of the glucagon-like peptide-1 (GLP-1) receptor, to alanine and observed a 38-fold reduction in GLP-1 potency. Interestingly, this potency loss was restored by the additional substitution of Cys-296 in ECL2 to alanine. Alongside the complete conservation of these cysteine residues in Family B GPCRs, this functional coupling suggested the presence of a disulfide bond. Further mutagenesis demonstrated that the low potency observed at the C226A mutant, compared with the C226A-C296A double mutant, was the result of the bulky nature of the released Cys-296 side chain. Since this suggested that ECL2 was in close proximity to the agonist activation pocket, an alanine scan of ECL2 was carried out which confirmed the important role of this loop in agonist-induced receptor activation.


Assuntos
Cisteína/química , Dissulfetos/química , Receptores de Glucagon/química , Receptores de Glucagon/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Cisteína/genética , Expressão Gênica/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos , Mutagênese , Receptores de Glucagon/genética , Relação Estrutura-Atividade
2.
J Alzheimers Dis ; 17(4): 773-86, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19542617

RESUMO

Synapse loss occurs early in Alzheimer's disease (AD) and is considered the best pathological correlate of cognitive decline. Ephrins and Eph receptors are involved in regulation of excitatory neurotransmission and play a role in cytoskeleton remodeling. We asked whether alterations in Eph receptors could underlie cognitive impairment in an AD mouse model overexpressing human amyloid-beta protein precursor (hA beta PP) with familial mutations (hA beta PP swe-ind mice). We found that EphA4 and EphB2 receptors were reduced in the hippocampus before the development of impaired object recognition and spatial memory. Similar results were obtained in another line of transgenic A beta PP mice, Tg2576. A reduction in Eph receptor levels was also found in postmortem hippocampal tissue from patients with incipient AD. At the time of onset of memory decline inhA beta PP swe-ind mice, no change in surface expression of AMPA or NMDA receptor subunits was apparent, but we found changes in Eph-receptor downstream signaling, in particular a decrease in membrane-associated phosho-cofilin levels that may cause cytoskeletal changes and disrupted synaptic activity. Consistent with this finding, Eph receptor activation in cell culture increased phosho-cofilin levels. The results suggest that alterations in Eph receptors may play a role in synaptic dysfunction in the hippocampus leading to cognitive impairment in a model of AD.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Cognição , Hipocampo/metabolismo , Memória , Receptor EphA4/metabolismo , Receptor EphB2/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Testes Neuropsicológicos , Mudanças Depois da Morte , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Reconhecimento Psicológico , Percepção Espacial , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...