Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37210585

RESUMO

Balancing selection is a form of natural selection maintaining diversity at the sites it targets and at linked nucleotide sites. Due to selection favoring heterozygosity, it has the potential to facilitate the accumulation of a "sheltered" load of tightly linked recessive deleterious mutations. However, precisely evaluating the extent of these effects has remained challenging. Taking advantage of plant self-incompatibility as one of the best-understood examples of long-term balancing selection, we provide a highly resolved picture of the genomic extent of balancing selection on the sheltered genetic load. We used targeted genome resequencing to reveal polymorphism of the genomic region flanking the self-incompatibility locus in three sample sets in each of the two closely related plant species Arabidopsis halleri and Arabidopsis lyrata, and used 100 control regions from throughout the genome to factor out differences in demographic histories and/or sample structure. Nucleotide polymorphism increased strongly around the S-locus in all sample sets, but only over a limited genomic region, as it became indistinguishable from the genomic background beyond the first 25-30 kb. Genes in this chromosomal interval exhibited no excess of mutations at 0-fold degenerated sites relative to putatively neutral sites, hence revealing no detectable weakening of the efficacy of purifying selection even for these most tightly linked genes. Overall, our results are consistent with the predictions of a narrow genomic influence of linkage to the S-locus and clarify how natural selection in one genomic region affects the evolution of the adjacent genomic regions.


Assuntos
Arabidopsis , Arabidopsis/genética , Carga Genética , Polimorfismo Genético , Seleção Genética , Nucleotídeos
2.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35084503

RESUMO

Contemporary gene flow, when resumed after a period of isolation, can have crucial consequences for endangered species, as it can both increase the supply of adaptive alleles and erode local adaptation. Determining the history of gene flow and thus the importance of contemporary hybridization, however, is notoriously difficult. Here, we focus on two endangered plant species, Arabis nemorensis and A. sagittata, which hybridize naturally in a sympatric population located on the banks of the Rhine. Using reduced genome sequencing, we determined the phylogeography of the two taxa but report only a unique sympatric population. Molecular variation in chloroplast DNA indicated that A. sagittata is the principal receiver of gene flow. Applying classical D-statistics and its derivatives to whole-genome data of 35 accessions, we detect gene flow not only in the sympatric population but also among allopatric populations. Using an Approximate Bayesian computation approach, we identify the model that best describes the history of gene flow between these taxa. This model shows that low levels of gene flow have persisted long after speciation. Around 10 000 years ago, gene flow stopped and a period of complete isolation began. Eventually, a hotspot of contemporary hybridization was formed in the unique sympatric population. Occasional sympatry may have helped protect these lineages from extinction in spite of their extremely low diversity.


Assuntos
Arabis/classificação , Espécies em Perigo de Extinção , Especiação Genética , Hibridização Genética , Animais , Teorema de Bayes , Fluxo Gênico , Genética Populacional , Simpatria
3.
PLoS Genet ; 17(1): e1008748, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33493157

RESUMO

The rate at which plants grow is a major functional trait in plant ecology. However, little is known about its evolution in natural populations. Here, we investigate evolutionary and environmental factors shaping variation in the growth rate of Arabidopsis thaliana. We used plant diameter as a proxy to monitor plant growth over time in environments that mimicked latitudinal differences in the intensity of natural light radiation, across a set of 278 genotypes sampled within four broad regions, including an outgroup set of genotypes from China. A field experiment conducted under natural conditions confirmed the ecological relevance of the observed variation. All genotypes markedly expanded their rosette diameter when the light supply was decreased, demonstrating that environmental plasticity is a predominant source of variation to adapt plant size to prevailing light conditions. Yet, we detected significant levels of genetic variation both in growth rate and growth plasticity. Genome-wide association studies revealed that only 2 single nucleotide polymorphisms associate with genetic variation for growth above Bonferroni confidence levels. However, marginally associated variants were significantly enriched among genes with an annotated role in growth and stress reactions. Polygenic scores computed from marginally associated variants confirmed the polygenic basis of growth variation. For both light regimes, phenotypic divergence between the most distantly related population (China) and the various regions in Europe is smaller than the variation observed within Europe, indicating that the evolution of growth rate is likely to be constrained by stabilizing selection. We observed that Spanish genotypes, however, reach a significantly larger size than Northern European genotypes. Tests of adaptive divergence and analysis of the individual burden of deleterious mutations reveal that adaptive processes have played a more important role in shaping regional differences in rosette growth than maladaptive evolution.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Herança Multifatorial/genética , Seleção Genética , Aclimatação/genética , Arabidopsis/crescimento & desenvolvimento , China , Europa (Continente) , Variação Genética/genética , Genética Populacional , Genótipo , Fenótipo , Desenvolvimento Vegetal/genética
4.
Ecol Lett ; 23(11): 1643-1653, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32851791

RESUMO

Rapid evolution of traits and of plasticity may enable adaptation to climate change, yet solid experimental evidence under natural conditions is scarce. Here, we imposed rainfall manipulations (+30%, control, -30%) for 10 years on entire natural plant communities in two Eastern Mediterranean sites. Additional sites along a natural rainfall gradient and selection analyses in a greenhouse assessed whether potential responses were adaptive. In both sites, our annual target species Biscutella didyma consistently evolved earlier phenology and higher reproductive allocation under drought. Multiple arguments suggest that this response was adaptive: it aligned with theory, corresponding trait shifts along the natural rainfall gradient, and selection analyses under differential watering in the greenhouse. However, another seven candidate traits did not evolve, and there was little support for evolution of plasticity. Our results provide compelling evidence for rapid adaptive evolution under climate change. Yet, several non-evolving traits may indicate potential constraints to full adaptation.


Assuntos
Mudança Climática , Secas , Adaptação Fisiológica , Plantas
5.
PLoS Genet ; 15(12): e1008512, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31860672

RESUMO

In plants, local adaptation across species range is frequent. Yet, much has to be discovered on its environmental drivers, the underlying functional traits and their molecular determinants. Genome scans are popular to uncover outlier loci potentially involved in the genetic architecture of local adaptation, however links between outliers and phenotypic variation are rarely addressed. Here we focused on adaptation of teosinte populations along two elevation gradients in Mexico that display continuous environmental changes at a short geographical scale. We used two common gardens, and phenotyped 18 traits in 1664 plants from 11 populations of annual teosintes. In parallel, we genotyped these plants for 38 microsatellite markers as well as for 171 outlier single nucleotide polymorphisms (SNPs) that displayed excess of allele differentiation between pairs of lowland and highland populations and/or correlation with environmental variables. Our results revealed that phenotypic differentiation at 10 out of the 18 traits was driven by local selection. Trait covariation along the elevation gradient indicated that adaptation to altitude results from the assembly of multiple co-adapted traits into a complex syndrome: as elevation increases, plants flower earlier, produce less tillers, display lower stomata density and carry larger, longer and heavier grains. The proportion of outlier SNPs associating with phenotypic variation, however, largely depended on whether we considered a neutral structure with 5 genetic groups (73.7%) or 11 populations (13.5%), indicating that population stratification greatly affected our results. Finally, chromosomal inversions were enriched for both SNPs whose allele frequencies shifted along elevation as well as phenotypically-associated SNPs. Altogether, our results are consistent with the establishment of an altitudinal syndrome promoted by local selective forces in teosinte populations in spite of detectable gene flow. Because elevation mimics climate change through space, SNPs that we found underlying phenotypic variation at adaptive traits may be relevant for future maize breeding.


Assuntos
Aclimatação , Proteínas de Plantas/genética , Poaceae/crescimento & desenvolvimento , Locos de Características Quantitativas , Fluxo Gênico , Genética Populacional , Técnicas de Genotipagem , México , Repetições de Microssatélites , Fenótipo , Poaceae/classificação , Poaceae/genética , Polimorfismo de Nucleotídeo Único , Seleção Genética
6.
Mol Ecol ; 28(17): 3887-3901, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31338892

RESUMO

Achieving high intraspecific genetic diversity is a critical goal in ecological restoration as it increases the adaptive potential and long-term resilience of populations. Thus, we investigated genetic diversity within and between pristine sites in a fossil floodplain and compared it to sites restored by hay transfer between 1997 and 2014. RAD-seq genotyping revealed that the stenoecious floodplain species Arabis nemorensis is co-occurring with individuals that, based on ploidy, ITS-sequencing and morphology, probably belong to the close relative Arabis sagittata, which has a documented preference for dry calcareous grasslands but has not been reported in floodplain meadows. We show that hay transfer maintains genetic diversity for both species. Additionally, in A. sagittata, transfer from multiple genetically isolated pristine sites resulted in restored sites with increased diversity and admixed local genotypes. In A. nemorensis, transfer did not create novel admixture dynamics because genetic diversity between pristine sites was less differentiated. Thus, the effects of hay transfer on genetic diversity also depend on the genetic make-up of the donor communities of each species, especially when local material is mixed. Our results demonstrate the efficiency of hay transfer for habitat restoration and emphasize the importance of prerestoration characterization of microgeographic patterns of intraspecific diversity of the community to guarantee that restoration practices reach their goal, that is maximize the adaptive potential of the entire restored plant community. Overlooking these patterns may alter the balance between species in the community. Additionally, our comparison of summary statistics obtained from de novo- and reference-based RAD-seq pipelines shows that the genomic impact of restoration can be reliably monitored in species lacking prior genomic knowledge.


Assuntos
Arabis/genética , Conservação dos Recursos Naturais , Ecossistema , Mapeamento por Restrição , Análise de Sequência de DNA , Variação Genética , Genética Populacional , Hibridização Genética , Recombinação Genética/genética , Especificidade da Espécie
7.
J Exp Bot ; 70(4): 1141-1151, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30561727

RESUMO

Arabidopsis thaliana is the most prominent model system in plant molecular biology and genetics. Although its ecology was initially neglected, collections of various genotypes revealed a complex population structure, with high levels of genetic diversity and substantial levels of phenotypic variation. This helped identify the genes and gene pathways mediating phenotypic change. Population genetics studies further demonstrated that this variation generally contributes to local adaptation. Here, we review evidence showing that traits affecting plant life history, growth rate, and stress reactions are not only locally adapted, they also often co-vary. Co-variation between these traits indicates that they evolve as trait syndromes, and reveals the ecological diversification that took place within A. thaliana. We argue that examining traits and the gene that control them within the context of global summary schemes that describe major ecological strategies will contribute to resolve important questions in both molecular biology and ecology.


Assuntos
Adaptação Biológica , Arabidopsis/fisiologia , Ligação Genética , Características de História de Vida , Arabidopsis/genética
9.
Genome Biol Evol ; 10(9): 2278-2291, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30215800

RESUMO

The selective impact of pathogen epidemics on host defenses can be strong but remains transient. By contrast, life-history shifts can durably and continuously modify the balance between costs and benefits of immunity, which arbitrates the evolution of host defenses. Their impact on the evolutionary dynamics of host immunity, however, has seldom been documented. Optimal investment into immunity is expected to decrease with shortening lifespan, because a shorter life decreases the probability to encounter pathogens or enemies. Here, we document that in natural populations of Arabidopsis thaliana, the expression levels of immunity genes correlate positively with flowering time, which in annual species is a proxy for lifespan. Using a novel genetic strategy based on bulk-segregants, we partitioned flowering time-dependent from -independent immunity genes and could demonstrate that this positive covariation can be genetically separated. It is therefore not explained by the pleiotropic action of some major regulatory genes controlling both immunity and lifespan. Moreover, we find that immunity genes containing variants reported to impact fitness in natural field conditions are among the genes whose expression covaries most strongly with flowering time. Taken together, these analyses reveal that natural selection has likely assorted alleles promoting lower expression of immunity genes with alleles that decrease the duration of vegetative lifespan in A. thaliana and vice versa. This is the first study documenting a pattern of variation consistent with the impact that selection on flowering time is predicted to have on diversity in host immunity.


Assuntos
Alelos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Evolução Biológica , Flores/genética , Flores/crescimento & desenvolvimento , Flores/imunologia , Genes de Plantas , Seleção Genética
10.
Mol Ecol ; 27(20): 4052-4065, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30118161

RESUMO

Stomata control gas exchanges between the plant and the atmosphere. How natural variation in stomata size and density contributes to resolve trade-offs between carbon uptake and water loss in response to local climatic variation is not yet understood. We developed an automated confocal microscopy approach to characterize natural genetic variation in stomatal patterning in 330 fully sequenced Arabidopsis thaliana accessions collected throughout the European range of the species. We compared this to variation in water-use efficiency, measured as carbon isotope discrimination (δ13 C). We detect substantial genetic variation for stomata size and density segregating within Arabidopsis thaliana. A positive correlation between stomata size and δ13 C further suggests that this variation has consequences on water-use efficiency. Genome wide association analyses indicate a complex genetic architecture underlying not only variation in stomatal patterning but also to its covariation with carbon uptake parameters. Yet, we report two novel QTL affecting δ13 C independently of stomatal patterning. This suggests that, in A. thaliana, both morphological and physiological variants contribute to genetic variance in water-use efficiency. Patterns of regional differentiation and covariation with climatic parameters indicate that natural selection has contributed to shape some of this variation, especially in Southern Sweden, where water availability is more limited in spring relative to summer. These conditions are expected to favour the evolution of drought avoidance mechanisms over drought escape strategies.


Assuntos
Arabidopsis/fisiologia , Estômatos de Plantas/fisiologia , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secas , Estudo de Associação Genômica Ampla/métodos , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Locos de Características Quantitativas/genética , Água/metabolismo
11.
Genome Biol Evol ; 10(6): 1403-1415, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788048

RESUMO

The merging of two divergent genomes in a hybrid is believed to trigger a "genomic shock", disrupting gene regulation and transposable element (TE) silencing. Here, we tested this expectation by comparing the pattern of expression of transposable elements in their native and hybrid genomic context. For this, we sequenced the transcriptome of the Arabidopsis thaliana genotype Col-0, the A. lyrata genotype MN47 and their F1 hybrid. Contrary to expectations, we observe that the level of TE expression in the hybrid is strongly correlated to levels in the parental species. We detect that at most 1.1% of expressed transposable elements belonging to two specific subfamilies change their expression level upon hybridization. Most of these changes, however, are of small magnitude. We observe that the few hybrid-specific modifications in TE expression are more likely to occur when TE insertions are close to genes. In addition, changes in epigenetic histone marks H3K9me2 and H3K27me3 following hybridization do not coincide with TEs with changed expression. Finally, we further examined TE expression in parents and hybrids exposed to severe dehydration stress. Despite the major reorganization of gene and TE expression by stress, we observe that hybridization does not lead to increased disorganization of TE expression in the hybrid. Although our study did not examine TE transposition activity in hybrids, the examination of the transcriptome shows that TE expression is globally robust to hybridization. The term "genomic shock" is perhaps not appropriate to describe transcriptional modification in a viable hybrid merging divergent genomes.


Assuntos
Arabidopsis/genética , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Epigênese Genética/genética , Genômica/métodos , Histonas/genética , Hibridização Genética , Transcrição Gênica/genética
12.
PLoS One ; 12(6): e0178990, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28604796

RESUMO

Understanding the genetics of lifetime fitness is crucial to understand a species' ecological preferences and ultimately predict its ability to cope with novel environmental conditions. Yet, there is a dearth of information regarding the impact of the ecological variance experienced by natural populations on expressed phenotypic and fitness differences. Here, we follow the natural dynamics of experimental A. thaliana populations over 5 successive plantings whose timing was determined by the natural progression of the plant's life cycle and disentangle the environmental and genetic factors that drive plant ecological performance at a given locality. We show that, at the temperate latitude where the experiment was conducted, a given genotype can experience winter-, spring- or summer-annual life cycles across successive seasons. Lifetime fitness across these seasons varied strongly, with a fall planting yielding 36-fold higher fitness compared to a spring planting. In addition, the actual life-stage at which plant overwinter oscillated across years, depending on the timing of the end of the summer season. We observed a rare but severe fitness differential coinciding with inadequate early flowering in one of the five planting. Substrate variation played a comparatively minor role, but also contributed to modulate the magnitude of fitness differentials between genotypes. Finally, reciprocal introgressions on chromosome 4 demonstrated that the fitness effect of a specific chromosomal region is strongly contingent on micro-geographic and seasonal fluctuations. Our study contributes to emphasize the extent to which the fitness impact of phenotypic traits and the genes that encode them in the genome can fluctuate. Experiments aiming at dissecting the molecular basis of local adaptation must apprehend the complexity introduced by temporal fluctuations because they massively affect the expression of phenotype and fitness differences.


Assuntos
Arabidopsis/genética , Aptidão Genética , Genética Populacional , Meio Ambiente , Germinação/genética , Fenótipo , Característica Quantitativa Herdável
13.
Mol Biol Evol ; 33(8): 2088-101, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27189540

RESUMO

Adaptation of a complex trait often requires the accumulation of many modifications to finely tune its underpinning molecular components to novel environmental requirements. The investigation of cis-acting regulatory modifications can be used to pinpoint molecular systems partaking in such complex adaptations. Here, we identify cis-acting modifications with the help of an interspecific crossing scheme designed to distinguish modifications derived in each of the two sister species, Arabidopsis halleri and A. lyrata Allele-specific expression levels were assessed in three environmental conditions chosen to reflect interspecific ecological differences: cold exposure, dehydration, and standard conditions. The functions described by Gene Ontology categories enriched in cis-acting mutations are markedly different in A. halleri and A. lyrata, suggesting that polygenic adaptation reshaped distinct polygenic molecular functions in the two species. In the A. halleri lineage, an excess of cis-acting changes affecting metal transport and homeostasis was observed, confirming that the well-known heavy metal tolerance of this species is the result of polygenic selection. In A. lyrata, we find a marked excess of cis-acting changes among genes showing a transcriptional response to cold stress in the outgroup species A. thaliana The adaptive relevance of these changes will have to be validated. We finally observed that polygenic molecular functions enriched in derived cis-acting changes are more constrained at the amino acid level. Using the distribution of cis-acting variation to tackle the polygenic basis of adaptation thus reveals the contribution of mutations of small effect to Darwinian adaptation.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Estresse Fisiológico/genética , Aclimatação/genética , Alelos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cruzamentos Genéticos , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Herança Multifatorial/genética , Filogenia , Transcriptoma
14.
Plant Cell ; 26(5): 2024-2037, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24876250

RESUMO

The timing of flowering is pivotal for maximizing reproductive success under fluctuating environmental conditions. Flowering time is tightly controlled by complex genetic networks that integrate endogenous and exogenous cues, such as light, temperature, photoperiod, and hormones. Here, we show that AGAMOUS-LIKE16 (AGL16) and its negative regulator microRNA824 (miR824) control flowering time in Arabidopsis thaliana. Knockout of AGL16 effectively accelerates flowering in nonvernalized Col-FRI, in which the floral inhibitor FLOWERING LOCUS C (FLC) is strongly expressed, but shows no effect if plants are vernalized or grown in short days. Alteration of AGL16 expression levels by manipulating miR824 abundance influences the timing of flowering quantitatively, depending on the expression level and number of functional FLC alleles. The effect of AGL16 is fully dependent on the presence of FLOWERING LOCUS T (FT). Further experiments show that AGL16 can interact directly with SHORT VEGETATIVE PHASE and indirectly with FLC, two proteins that form a complex to repress expression of FT. Our data reveal that miR824 and AGL16 modulate the extent of flowering time repression in a long-day photoperiod.

15.
PLoS Genet ; 10(3): e1004221, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24625826

RESUMO

Arabidopsis seeds rapidly release hydrophilic polysaccharides from the seed coat on imbibition. These form a heavy mucilage layer around the seed that makes it sink in water. Fourteen natural Arabidopsis variants from central Asia and Scandinavia were identified with seeds that have modified mucilage release and float. Four of these have a novel mucilage phenotype with almost none of the released mucilage adhering to the seed and the absence of cellulose microfibrils. Mucilage release was modified in the variants by ten independent causal mutations in four different loci. Seven distinct mutations affected one locus, coding the MUM2 ß-D-galactosidase, and represent a striking example of allelic heterogeneity. The modification of mucilage release has thus evolved a number of times independently in two restricted geographical zones. All the natural mutants identified still accumulated mucilage polysaccharides in seed coat epidermal cells. Using nuclear magnetic resonance (NMR) relaxometry their production and retention was shown to reduce water mobility into internal seed tissues during imbibition, which would help to maintain seed buoyancy. Surprisingly, despite released mucilage being an excellent hydrogel it did not increase the rate of water uptake by internal seed tissues and is more likely to play a role in retaining water around the seed.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sementes/crescimento & desenvolvimento , beta-Galactosidase/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Evolução Molecular , Espectroscopia de Ressonância Magnética , Mutação , Mucilagem Vegetal/genética , Sementes/genética , Água/química , Água/metabolismo
16.
Curr Opin Genet Dev ; 23(6): 665-71, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24268985

RESUMO

Elucidating the molecular basis of natural variation in complex traits is the key for their effective management in crops or natural systems. This review focuses on plant variation. It will first, show that genetic modifications causing major alterations in polygenic phenotypes often hit targets within an array of 'candidate genes', second, present new methods that include mutations of all effect sizes, and help exhaustively describe the molecular systems underlying complex traits, and third, discuss recent findings regarding the role of epigenetic variants, which in plants are often maintained through both mitosis and meiosis. Exploring the whole spectrum of mutations controlling complex traits is made possible by the combination of genetic, genomic and epigenomic approaches.


Assuntos
Aptidão Genética/genética , Mutação , Plantas/genética , Locos de Características Quantitativas/genética , Epigenômica/métodos , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética/métodos , Modelos Genéticos , Desenvolvimento Vegetal/genética
17.
Phys Biol ; 10(5): 056007, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24091933

RESUMO

RNA molecules follow a succession of enzyme-mediated processing steps from transcription to maturation. The participating enzymes, for example the spliceosome for mRNAs and Drosha and Dicer for microRNAs, are also produced in the cell and their copy-numbers fluctuate over time. Enzyme copy-number changes affect the processing rate of the substrate molecules; high enzyme numbers increase the processing rate, while low enzyme numbers decrease it. We study different RNA-processing cascades where enzyme copy-numbers are either fixed or fluctuate. We find that for the fixed enzyme copy-numbers, the substrates at steady-state are Poisson-distributed, and the whole RNA cascade dynamics can be understood as a single birth-death process of the mature RNA product. In this case, solely fluctuations in the timing of RNA processing lead to variation in the number of RNA molecules. However, we show analytically and numerically that when enzyme copy-numbers fluctuate, the strength of RNA fluctuations increases linearly with the RNA transcription rate. This linear effect becomes stronger as the speed of enzyme dynamics decreases relative to the speed of RNA dynamics. Interestingly, we find that under certain conditions, the RNA cascade can reduce the strength of fluctuations in the expression level of the mature RNA product. Finally, by investigating the effects of processing polymorphisms, we show that it is possible for the effects of transcriptional polymorphisms to be enhanced, reduced or even reversed. Our results provide a framework to understand the dynamics of RNA processing.


Assuntos
Processamento Pós-Transcricional do RNA , Cinética , MicroRNAs/biossíntese , MicroRNAs/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética
18.
PLoS One ; 8(5): e61075, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717385

RESUMO

Life-history traits controlling the duration and timing of developmental phases in the life cycle jointly determine fitness. Therefore, life-history traits studied in isolation provide an incomplete view on the relevance of life-cycle variation for adaptation. In this study, we examine genetic variation in traits covering the major life history events of the annual species Arabidopsis thaliana: seed dormancy, vegetative growth rate and flowering time. In a sample of 112 genotypes collected throughout the European range of the species, both seed dormancy and flowering time follow a latitudinal gradient independent of the major population structure gradient. This finding confirms previous studies reporting the adaptive evolution of these two traits. Here, however, we further analyze patterns of co-variation among traits. We observe that co-variation between primary dormancy, vegetative growth rate and flowering time also follows a latitudinal cline. At higher latitudes, vegetative growth rate is positively correlated with primary dormancy and negatively with flowering time. In the South, this trend disappears. Patterns of trait co-variation change, presumably because major environmental gradients shift with latitude. This pattern appears unrelated to population structure, suggesting that changes in the coordinated evolution of major life history traits is adaptive. Our data suggest that A. thaliana provides a good model for the evolution of trade-offs and their genetic basis.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Dormência de Plantas , Sementes/crescimento & desenvolvimento , Arabidopsis/genética , Evolução Biológica , Europa (Continente) , Flores/genética , Genótipo , Germinação , Fenótipo , Filogeografia , Polimorfismo de Nucleotídeo Único , Estações do Ano , Sementes/genética
19.
Mob Genet Elements ; 2(3): 142-144, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23061020

RESUMO

Arabidopsis thaliana is a model plant species and its molecular dissection has greatly contributed to our understanding of the systems preventing genome invasion by transposable elements (TE). Recent advances suggest that A. thaliana may be more efficient than its congener A. lyrata at controlling TE expression and proliferation. The comparative analysis of TE transcription in A. thaliana and A. lyrata, which differ by 40% in genome size, may help understand how silencing mechanisms contribute to the evolution of transposition rate, an important factor controlling genome size variation in plants and animals.

20.
Evolution ; 66(7): 2287-302, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22759302

RESUMO

Local adaptation provides an opportunity to study the genetic basis of adaptation and investigate the allelic architecture of adaptive genes. We study delay of germination 1 (DOG1), a gene controlling natural variation in seed dormancy in Arabidopsis thaliana and investigate evolution of dormancy in 41 populations distributed in four regions separated by natural barriers. Using F(ST) and Q(ST) comparisons, we compare variation at DOG1 with neutral markers and quantitative variation in seed dormancy. Patterns of genetic differentiation among populations suggest that the gene DOG1 contributes to local adaptation. Although Q(ST) for seed dormancy is not different from F(ST) for neutral markers, a correlation with variation in summer precipitation supports that seed dormancy is adaptive. We characterize dormancy variation in several F(2) -populations and show that a series of functionally distinct alleles segregate at the DOG1 locus. Theoretical models have shown that the number and effect of alleles segregatin at quantitative trait loci (QTL) have important consequences for adaptation. Our results provide support to models postulating a large number of alleles at quantitative trait loci involved in adaptation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Meio Ambiente , Variação Genética , Dormência de Plantas , Adaptação Fisiológica , Alelos , Ásia Central , Europa (Continente) , Dados de Sequência Molecular , Fenótipo , Reação em Cadeia da Polimerase , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...