Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 23(19): 20003-16, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27439753

RESUMO

Anthropogenic disturbances change the trophic structure of streams, ultimately affecting ecosystem functioning. We investigated the effects of human disturbances, mainly organic pollution, on ciliate functional feeding groups (FFG) in 10 tropical streams near agricultural and urban habitats, in the dry and rainy seasons. We hypothesised that the organic pollution would affect the ciliate composition and that the richness and abundance of ciliate FFG would be associated with different disturbances, such that an increase in the load of organic matter would result in an increase in the percentage of bacterivores ciliates, while streams with low organic matter concentration and wide canopy openness will determine a higher contribution of algivorous ciliates. Our results corroborate our hypothesis of an increased development of bacterivorous ciliates with increasing organic pollution, but only in the abundance of this FFG. Also, algivorous ciliates were found to be related to riparian vegetation clearing. Thus, ciliate FFG accurately reflected different anthropogenic disturbances, revealing a change in the trophic structure of the streams. In addition, we found that organic pollution can lead to both taxonomic and functional homogenization of the ciliate community, which implies serious consequences for ecosystem functioning.


Assuntos
Cilióforos/fisiologia , Ecossistema , Rios , Humanos , Chuva , Poluição da Água
2.
Microb Ecol ; 69(2): 225-33, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25213653

RESUMO

Food webs include complex ecological interactions that define the flow of matter and energy, and are fundamental in understanding the functioning of an ecosystem. Temporal variations in the densities of communities belonging to the planktonic food web (i.e., microbial: bacteria, flagellate, and ciliate; and grazing: zooplankton and phytoplankton) were investigated, aiming to clarify the interactions between these organisms and the dynamics of the planktonic food web in a floodplain lake. We hypothesized that hydrological pulse determines the path of matter and energy flow through the planktonic food web of this floodplain lake. Data were collected monthly from March 2007 to February 2008 at three different sites in Guaraná Lake (Mato Grosso do Sul State, Brazil). The path analysis provided evidence that the dynamics of the planktonic food web was strongly influenced by the hydrological pulse. The high-water period favored interactions among the organisms of the microbial loop, rather than their relationships with zooplankton and phytoplankton. Therefore, in this period, the strong interaction among the organisms of the grazing food chain suggests that the microbial loop functions as a sink of matter and energy. In turn, in the low-water period, higher primary productivity appeared to favor different interactions between the components of the grazing food chain and microorganisms, which would function as a link to the higher trophic levels.


Assuntos
Cadeia Alimentar , Lagos/microbiologia , Fitoplâncton/microbiologia , Zooplâncton/microbiologia , Animais , Biomassa , Brasil , Ecossistema , Sedimentos Geológicos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...