Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Glob Antimicrob Resist ; 9: 61-67, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28419868

RESUMO

OBJECTIVES: Considering the global concern of ciprofloxacin resistance, the aim of this study was to evaluate the characteristics of ciprofloxacin-resistant (CIP-R) Escherichia coli isolated from patients with community-acquired urinary tract infections (UTIs) in Brasília, Brazil. METHODS: CIP-R E. coli isolated from different outpatients between July 2013 and April 2014 in a tertiary hospital were analysed for antibiotic resistance profile, phylotype, uropathogenic E. coli (UPEC) virulence genes, clonal relationship by enterobacterial repetitive intergenic consensus PCR (ERIC-PCR), and multilocus sequence typing (MLST). RESULTS: Among the 324 UPEC analysed, 263 (81.2%) were ciprofloxacin-sensitive and 61 (18.8%) were CIP-R. Antibiogram analysis of the 61 CIP-R strains showed that 45 (73.8%) were also multidrug-resistant. The most prevalent phylogroups were A and B2 (26/61 and 18/61, respectively). traT (53/61) and aer-traT (24/61) were the most common gene and genotype observed. Dendrogram analysis found that multidrug resistance and virulence genes were distributed among CIP-R strains independently of clonality and phylogroup. Six ERIC clusters (strains sharing ≥85% genetic similarity) were observed. MLST analysis of all strains of each cluster identified sequence types (STs) associated with worldwide antimicrobial resistance dissemination, including B2-ST131 and ST410, as well as STs not yet associated with antimicrobial resistance propagation, such as ST1725 and ST179. CONCLUSIONS: These results demonstrate that ciprofloxacin resistance dissemination by UPEC causing community-acquired UTIs was associated with multidrug resistance and was promoted by pandemic and non-pandemic STs, a concerning scenario for the local population.


Assuntos
Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Infecções Comunitárias Adquiridas/microbiologia , Farmacorresistência Bacteriana , Infecções por Escherichia coli/microbiologia , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Brasil/epidemiologia , Infecções Comunitárias Adquiridas/epidemiologia , Infecções por Escherichia coli/epidemiologia , Genótipo , Humanos , Tipagem de Sequências Multilocus , Filogenia , Reação em Cadeia da Polimerase , Centros de Atenção Terciária , Infecções Urinárias/epidemiologia , Escherichia coli Uropatogênica/classificação , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/isolamento & purificação , Fatores de Virulência/genética
2.
J Glob Antimicrob Resist ; 6: 1-4, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27530830

RESUMO

The aim of this work was to analyse extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli strains isolated from outpatients with signs of cystitis in Hospital Universitário de Brasília (Brasília, Brazil) during the period July 2013 to April 2014. E. coli isolated from urine culture were identified and their antibiotic susceptibility profile was determined by VITEK 2. ESBL-producing strains identified were submitted to PCR for Clermont phylotyping, CTX-M group typing and virulence determinant detection, and clonal relationships were determined by enterobacterial repetitive intergenic consensus (ERIC)-PCR. One strain belonging to each cluster of the dendrogram obtained by ERIC-PCR was selected for multilocus sequence typing (MLST). Among 324 uropathogenic E. coli (UPEC) analysed, 23 (7.1%) were identified as producing ESBL. All ESBL-producing strains were multidrug-resistant (MDR), i.e. presented non-susceptibility to at least one agent in three or more antimicrobial categories. Of the 23 ESBL-producing UPEC strains, 9 were assigned to phylogenetic group B2 and 7 each belonged to phylogenetic groups D and A. Virulence genotyping showed that aer was the most prevalent gene observed among the strains (21/23), followed by traT (18/23), pap (5/23), afa (5/23), PAI (5/23), cnf (3/23) and sfa (1/23). Analysis of the dendrogram showed that multidrug resistance and CTX-M ESBL groups were distributed among all strains, independent of clonality and phylogroup. Sequence types (STs) associated with pandemic resistance clones, such as B2-ST131 and D-ST648, were observed among the isolates. In conclusion, the results showed worrisome evidence of the potential for antibiotic multiresistant dissemination among community-acquired urinary tract infection caused by UPEC.


Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/epidemiologia , Escherichia coli/enzimologia , Infecções Urinárias/microbiologia , beta-Lactamases/genética , Técnicas de Tipagem Bacteriana , Brasil/epidemiologia , Escherichia coli/classificação , Humanos , Tipagem de Sequências Multilocus , Filogenia , Infecções Urinárias/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...