Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 15(36): 15204-13, 2013 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23925140

RESUMO

A comprehensive spectral and photophysical investigation of four donor-acceptor-donor (DAD) oligomers consisting of electron-deficient 2,1,3-benzothiadiazole or quinoxaline moieties linked to electron-rich thienyl or bithienyl units has been undertaken. Additionally, a bis(dithienyl) substituted naphthalene was also investigated. The D-A-D nature of these oligomers resulted in the presence of an intramolecular charge transfer (ICT) state, which was further substantiated by solvatochromism studies (analysis with the Lippert-Mataga formalism). Hereby, significant differences have been obtained for the fluorescence quantum yields of the oligomers in the non-polar solvent methylcyclohexane vs. the polar ethanol. The study was further complemented with the determination of the optimized ground-state molecular geometries for the oligomers together with the prediction of the lowest vertical one-electron excitation energy and the relevant molecular orbital contours using DFT calculations. The electronic transitions show a clear HOMO to LUMO charge-transfer character. In contrast to the thiophene oligomers (the oligothiophenes with n = 1-7), where the intersystem crossing (ISC) yield decreases with n, the studied DAD oligomers were found to show an increase in the ISC efficiency with the number of (donor) thienyl units.


Assuntos
Teoria Quântica , Quinoxalinas/química , Tiadiazóis/química , Modelos Moleculares , Estrutura Molecular
2.
J Phys Chem B ; 115(36): 10573-85, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21819111

RESUMO

In this paper we have prepared a new series of oligothiophenes capped with hexyl groups and a variety of strong acceptors, mainly cyanovinyl moieties. An exhaustive analysis of the absorption, photophysical, electrochemical, solid state, nonlinear optical and vibrational properties has been presented guided by theoretical calculations. The investigation is centered on the efficiency of the intramolecular charge transfer (i.e., chain length and acceptor dependence) and its impact on all the relevant electronic, structural, optical, and vibrational properties. The most significant features imparted by the acceptors through the π-conjugated oligothiophene path are (i) intense visible electronic absorptions, (ii) tuned fluorescence wavelength emissions, (iii) solid state π-stacking, (iv) ambipolar redox behavior, (v) S(1) ⇝ S(0) internal conversion as being the major route for the deactivation of the excited state, and (vi) large electronic and vibrational contributions to their nonlinear optical response (hyperpolarizability). The analysis establishes connections between the different properties of the materials and structure-function relationships useful in organic electronics.

3.
J Phys Chem B ; 112(4): 1104-11, 2008 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-18181606

RESUMO

A comprehensive study has been undertaken of the electronic spectral and photophysical properties of two oligophenyl (BPH and BPHF) and one oligothienyl (BTF) swivel cruciforms involving measurements of absorption, fluorescence, and phosphorescence spectra, quantum yields of fluorescence (phiF), phosphorescence (phiPh) and triplet formation (phiT), lifetimes of fluorescence (tauF) and of the triplet state (tauT), and quantum yields of singlet oxygen production (phiDelta). From these, all radiative kF and radiationless rate constants, kIC and kISC, have been obtained in solution. The energies of the lowest lying singlet and triplet excited states were also determined at 293 K. Several of the above properties have also been obtained at low temperature and in the solid state (thin films). In general, for the phenyl oligophenyl (BPH) and for the oligothienyl (BTF) compounds, the radiationless decay channels (phiIC+phiISC) are the dominant pathway for the excited-state deactivation, whereas with the fluorene based oligophenyl BPHF the radiative route prevails. In contrast to the general rule found for related oligomers (and polymers) where radiative emission from T1 is absent, with the compounds studied, phosphorescence has been observed for all of the compounds, indicating that this type of functionalization can lead to emissive triplets. Time-resolved fluorescence decays with picosecond resolution revealed multiexponential (bi- and triexponential) decay laws compatible with the existence of more than one species or conformation in the excited state. These results are discussed on the basis of conformational flexibility in the excited state.

4.
J Phys Chem B ; 111(17): 4401-10, 2007 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-17425360

RESUMO

Understanding factors responsible for the fluorescence behavior of conjugated polyelectrolytes and modulation of their behavior are important for their application as functional materials. The interaction between the anionic poly{1,4-phenylene-[9,9-bis(4-phenoxy-butylsulfonate)]fluorene-2,7-diyl}copolymer (PBS-PFP) and cationic gemini surfactants alpha,omega-(CmH2m+1N+(CH3)2)2(CH2)s(Br-)2 (m-s-m; m=12, s=2, 3, 5, 6, 10, and 12) has been studied experimentally in aqueous solution. These surfactants are chosen to see whether molecular recognition and self-assembly occurs between the oppositely charged conjugated polyelectrolyte and gemini surfactant when the spacer length on the surfactant is similar to the intercharge separation on the polymer. Without surfactants, PBS-PFP exists as aggregates. These are broken up upon addition of gemini surfactants. However, as anticipated, the behavior strongly depends upon spacer length (s). Fluorescence measurements show three surfactant concentration regimes: At low concentrations (<2x10(-6) M) quenching occurs and is most marked with the small spacer 12-2-12; at intermediate concentrations (approximately 2x10(-6)-10(-3) M), fluorescence intensity is constant, with a 12-carbon spacer 12-12-12 showing the strongest fluorescence; above the critical micelle concentration (CMC; approximately 10(-3) M) increases in emission intensity are seen in all cases and are largest with the intermediate spacers 12-5-12 and 12-6-12, where the spacer length most closely matches the distance between monomer units on the polymer. With longer spacer length surfactants, surface tension measurements for concentrations below the CMC reveal the presence of polymer-surfactant aggregates at the air-water interface, possibly reflecting increased hydrophobicity. Above the CMC, small-angle neutron scattering experiments for the 12-6-12 system show the presence of spherical aggregates, both for the pure surfactant and for polyelectrolyte/gemini mixtures. Molecular dynamics simulations help rationalize these observations and show that there is a very fine balance between electrostatic and hydrophobic interactions. With the shortest spacer 12-2-12, Coulombic interactions are dominant, while for the longest spacer 12-12-12 the driving force involves hydrophobic interactions. Qualitatively, with the intermediate 12-5-12 and 12-6-12 systems, the optimum balance is observed between Coulombic and hydrophobic interactions, explaining their strong fluorescence enhancement.


Assuntos
Cátions/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Polímeros/química , Tensoativos/química , Alcanossulfonatos/química , Simulação por Computador , Fluorenos/química , Estrutura Molecular , Nêutrons , Fotoquímica , Polieletrólitos , Eletricidade Estática , Propriedades de Superfície
5.
Chemphyschem ; 7(12): 2533-9, 2006 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-17072943

RESUMO

We measured the temperature dependence (from +32 to -50 degrees C) of charge-recombination rates between contact radical ion pairs in isopropyl ether. In the systems selected for this study, aromatic hydrocarbon cations are the electron acceptors and the fumaronitrile anion is the electron donor. Nearly quantitative electron transfers occur at all temperatures. The charge recombinations have excess exothermicities of -60 kcal mol(-1) and exhibit a very weak temperature dependence. Our observations emphasize the absence of solvent effects and the relevance of nuclear tunneling in charge recombinations.

6.
Chemistry ; 12(19): 5014-23, 2006 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-16548016

RESUMO

Charge-recombination rates in contact radical-ion pairs, formed between aromatic hydrocarbons and nitriles in supercritical CO(2) and heptane, decrease with the exothermicity of the reactions until they reach -70 kcal mol(-1), but from there on an increase is observed. The first decrease in rate is typical of the "inverted region" of electron-transfer reactions. The change to an increase in the rate for ultra-exothermic electron transfer indicates a new free-energy relationship. We show that the resulting "double-inverted region" is not due to a change in mechanism. It is an intrinsic property of electron-transfer reactions, and it is due to the increase of the reorganisation energy with the reaction exothermicity.

7.
Dalton Trans ; (14): 2180-7, 2004 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-15249955

RESUMO

The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.


Assuntos
Compostos Organometálicos/análise , Compostos Organometálicos/química , Zinco/análise , Zinco/química , Acetonitrilas , Cristalografia por Raios X , Etanol , Fluorescência , Concentração de Íons de Hidrogênio , Ligantes , Espectroscopia de Ressonância Magnética , Técnicas de Sonda Molecular , Estrutura Molecular , Soluções/química , Temperatura , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...