Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 10: 1198802, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37502722

RESUMO

Twenty agroforestry systems consisting of different management practices (conventional and organic) and shade types were set up for coffee plantations in 2,000 at the Tropical Agricultural Research and Higher Education Center (CATIE), Turrialba, Costa Rica. The physical (density, bulk density, moisture content, and roasting loss) and chemical attributes (mineral, total lipid, fatty acids, caffeine, and carbohydrate contents) of harvested green coffee beans were investigated. The full sun and Erythrina shade tree systems significantly improved (p < 0.05) the density of the green coffee beans and decreased (p < 0.05) the moisture content and roasting loss of the green coffee beans. The intensive organic (IO) management practice significantly increased some mineral contents, such as K, P, and Ca, in green coffee beans. The full sun system also significantly promoted (p < 0.05) some mineral contents, such as Ca and Mn, in green coffee beans. In terms of total lipid and fatty acids (FAs), compared with the moderate conventional (MC) management practice, the IO management practice was beneficial as it significantly increased (p < 0.05) the total lipid and FAs contents in the green coffee beans, while the Erythrina shade tree system significantly increased (p < 0.05) the total lipid and FAs contents of green coffee beans more efficiently than the other shade types. The caffeine content of green coffee beans was significantly higher (p < 0.05) under the intensive conventional (IC) and IO management practices than under the MC management practice and higher under the full sun system than under the shaded system. The Erythrina shade tree system significantly improved (p < 0.05) the carbohydrate content of green coffee beans. Overall, in consideration of sustainability, the IO management practice associated with the Erythrina shade tree system would be a useful combination for the local farmers to grow coffee trees.

2.
Sci Total Environ ; 795: 148934, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34328927

RESUMO

Plant diversification through crop rotation or agroforestry is a promising way to improve sustainability of agroecosystems. Nonetheless, criteria to select the most suitable plant communities for agroecosystems diversification facing contrasting environmental constraints need to be refined. Here, we compared the impacts of 24 different plant communities on soil fertility across six tropical agroecosystems: either on highly weathered Ferralsols, with strong P limitation, or on partially weathered soils derived from volcanic material, with major N limitation. In each agroecosystem, we tested several plant communities for diversification, as compared to a matching low diversity management for their cropping system. Plant residue restitution, N, P and lignin contents were measured for each plant community. In parallel, the soil under each community was analyzed for organic C and N, inorganic N, Olsen P, soil pH and nematode community composition. Soil potential fertility was assessed with plant bioassays under greenhouse controlled climatic conditions. Overall, plant diversification had a positive effect on soil fertility across all sites, with contrasting effects depending on soil type and legumes presence in the community. Communities with legumes improved soil fertility indicators of volcanic soils, which was demonstrated through significantly higher plant biomass production in the bioassays (+18%) and soil inorganic N (+26%) compared to the low diversity management. Contrastingly, communities without legumes were the most beneficial in Ferralsols, with increases in plant biomass production in the bioassays (+39%), soil Olsen P (+46%), soil C (+26%), and pH (+5%). Piecewise structural equation models with Shipley's test revealed that plant diversification impacts on volcanic soil fertility were related to soil N availability, driven by litter N. Meanwhile, Ferralsols fertility was related to soil P availability, driven by litter P. These findings underline the importance of multifactorial and multi-sites experiments to inform trait-based frameworks used in designing optimal plant diversification in agroecological systems.


Assuntos
Fabaceae , Nematoides , Animais , Biomassa , Solo , Microbiologia do Solo
3.
Tree Physiol ; 41(12): 2308-2325, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34046676

RESUMO

In coffee, fruit production on a given shoot drops after some years of high yield, triggering pruning to induce resprouting. The timing of pruning is a crucial farmer's decision affecting yield and labour. One reason for fruit production drop could be the exhaustion of resources, particularly the non-structural carbohydrates (NSC). To test this hypothesis in a Coffea L. arabica agroforestry system, we measured the concentrations of NSC, carbon (C) and nitrogen (N) in leaves, stems and stumps of the coffee plants, 2 and 5 years after pruning. We also compared shaded vs full sun plants. For that purpose, both analytical reference and visible and near infrared reflectance spectroscopy (VNIRS) methods were used. As expected, concentrations of biochemical variables linked to photosynthesis activity (N, glucose, fructose, sucrose) decreased from leaves to stems, and then to stumps. In contrast, variables linked more closely to plant structure and reserves (total C, C:N ratio, starch concentration) were higher in long lifespan organs like stumps. Shading had little effect on most measured parameters, contrary to expectations. Concentrations of N, glucose and fructose were higher in 2-year-old organs. Conversely, starch concentration in perennial stumps was three times higher 5 years after pruning than 2 years after pruning, despite high fruit production. Therefore, the drop in fruit production occurring after 5-6 years was not due to a lack of NSC on plant scale. Starch accumulation in perennial organs concurrently to other sinks, such as fruit growth, could be considered as a 'survival' strategy, which may be a relic of the behaviour of wild coffee (a tropical shade-tolerant plant). This study confirmed that VNIRS is a promisingly rapid and cost-effective option for starch monitoring (coefficient of determination for validation, R2val = 0.91), whereas predictions were less accurate for soluble sugars, probably due to their too similar spectral signature.


Assuntos
Coffea , Café , Frutas , Folhas de Planta , Amido
4.
Sci Total Environ ; 649: 1065-1074, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30308878

RESUMO

Conventional, intensively managed coffee plantations are currently facing environmental challenges. The use of shade trees and the organic management of coffee crops are welcome alternatives, aiming to reduce synthetic inputs and restore soil biological balance. However, little is known about the impacts of the different types of shade tree species on soil functioning and fauna. In this paper, we assess soil nutrient availability and food web structure on a 17-year old experimental coffee plantation in Turrialba in Costa Rica. Three shade types (unshaded coffee, shaded with Terminalia amazonia, and shaded with Erythrina poepiggiana) combined with two management practices (organic and conventional) were evaluated. Total C and N, inorganic N and Olsen P content, soil pH, global soil fertility, and nematode and microarthropod communities were measured in the top 10 cm soil layer, with the objective of determining how shade tree species impact the soil food web and soil C, N and P cycling under different types of management. We noted a decrease in soil inorganic N content and nematode density under conventional management (respectively -47% and -91% compared to organic management), which suggested an important biological imbalance, possibly caused by the lack of organic amendment. Under conventional management, soil nutrient availability and fauna densities were higher under shade, regardless of the shade tree species. Under organic management, only soils under E. poeppigiana, a heavily pruned, N2-fixing species, had increased nutrient availability and fauna density, while T. amazonia shade had a null or negative impact. The effects of coffee management and shade type on soil nutrient availability were mirrored by changes in soil food web structure. Higher fertility was recorded in soil with balanced food webs. These results emphasize the importance of the choice of shade tree species for soil functions in low input systems, more so than in fertilized systems.


Assuntos
Coffea/crescimento & desenvolvimento , Cadeia Alimentar , Agricultura Florestal , Agricultura Orgânica , Solo/química , Árvores/metabolismo , Ciclo do Carbono , Costa Rica , Ciclo do Nitrogênio , Fósforo/metabolismo , Especificidade da Espécie
5.
Front Plant Sci ; 8: 1196, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28747919

RESUMO

Hypotheses on the existence of a universal "Root Economics Spectrum" (RES) have received arguably the least attention of all trait spectra, despite the key role root trait variation plays in resource acquisition potential. There is growing interest in quantifying intraspecific trait variation (ITV) in plants, but there are few studies evaluating (i) the existence of an intraspecific RES within a plant species, or (ii) how a RES may be coordinated with other trait spectra within species, such as a leaf economics spectrum (LES). Using Coffea arabica (Rubiaceae) as a model species, we measured seven morphological and chemical traits of intact lateral roots, which were paired with information on four key LES traits. Field collections were completed across four nested levels of biological organization. The intraspecific trait coefficient of variation (cv) ranged from 25 to 87% with root diameter and specific root tip density showing the lowest and highest cv, respectively. Between 27 and 68% of root ITV was explained by site identity alone for five of the seven traits measured. A single principal component explained 56.2% of root trait covariation, with plants falling along a RES from resource acquiring to conserving traits. Multiple factor analysis revealed significant orthogonal relationships between root and leaf spectra. RES traits were strongly orthogonal with respect to LES traits, suggesting these traits vary independently from one another in response to environmental cues. This study provides among the first evidence that plants from the same species differentiate from one another along an intraspecific RES. We find that in one of the world's most widely cultivated crops, an intraspecific RES is orthogonal to an intraspecific LES, indicating that above and belowground responses of plants to managed (or natural) environmental gradients are likely to occur independently from one another.

6.
Ann Bot ; 118(4): 833-851, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27551026

RESUMO

Background and Aims In Costa Rica, coffee (Coffea arabica) plants are often grown in agroforests. However, it is not known if shade-inducing trees reduce coffee plant biomass through root competition, and hence alter overall net primary productivity (NPP). We estimated biomass and NPP at the stand level, taking into account deep roots and the position of plants with regard to trees. Methods Stem growth and root biomass, turnover and decomposition were measured in mixed coffee/tree (Erythrina poeppigiana) plantations. Growth ring width and number at the stem base were estimated along with stem basal area on a range of plant sizes. Root biomass and fine root density were measured in trenches to a depth of 4 m. To take into account the below-ground heterogeneity of the agroforestry system, fine root turnover was measured by sequential soil coring (to a depth of 30 cm) over 1 year and at different locations (in full sun or under trees and in rows/inter-rows). Allometric relationships were used to calculate NPP of perennial components, which was then scaled up to the stand level. Key Results Annual ring width at the stem base increased up to 2·5 mm yr-1 with plant age (over a 44-year period). Nearly all (92 %) coffee root biomass was located in the top 1·5 m, and only 8 % from 1·5 m to a depth of 4 m. Perennial woody root biomass was 16 t ha-1 and NPP of perennial roots was 1·3 t ha-1 yr-1. Fine root biomass (0-30 cm) was two-fold higher in the row compared with between rows. Fine root biomass was 2·29 t ha-1 (12 % of total root biomass) and NPP of fine roots was 2·96 t ha-1 yr-1 (69 % of total root NPP). Fine root turnover was 1·3 yr-1 and lifespan was 0·8 years. Conclusions Coffee root systems comprised 49 % of the total plant biomass; such a high ratio is possibly a consequence of shoot pruning. There was no significant effect of trees on coffee fine root biomass, suggesting that coffee root systems are very competitive in the topsoil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...