Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photodiagnosis Photodyn Ther ; 25: 197-203, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30586617

RESUMO

Fusarium keratoplasticum and Fusarium moniliforme are filamentous fungi common in the environment and cause mycosis in both animals and plants. Human infections include mycetoma, keratitis and onychomycosis, while deeper mycosis occurs in immunocompromised patients. Most of the Fusarium spp. are frequently resistant to treatment with currently used antifungals. The frequent occurrence of antifungal resistance has motivated the study of antimicrobial photodynamic therapy as an alternative treatment for fungal infections. Many studies have investigated the in vitro use of antimicrobial photodynamic therapy to kill fungi, but rarely in animal models of infection. Thus, here we employed the invertebrate wax moth Galleria mellonella to study the in vivo effects of antimicrobial photodynamic therapy with three different phenothiazinium photosensitizers, methylene blue, new methylene blue N and the pentacyclic S137 against infection with microconidia of Fusarium keratoplasticum and Fusarium moniliforme. The effect of antimicrobial photodynamic therapy using these photosensitizers and light-emitting diodes with an emission peak at 635 nm and an integrated irradiance from 570 to 670 nm of 9.8 mW cm-2 was investigated regarding the toxicity, fungal burden, larval survival and cellular immune response. The results from this model indicate that antimicrobial photodynamic therapy with methylene blue, new methylene blue N and S137 is efficient for the treatment of infection with F. keratoplasticum and F. moniliforme. The efficiency can be attributed to the fungal cell damage caused by antimicrobial photodynamic therapy which facilitates the action of the host immune response.


Assuntos
Fusarium/efeitos dos fármacos , Fenotiazinas/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Animais , Antifúngicos/farmacologia , Dipeptídeos/farmacologia , Farmacorresistência Fúngica , Larva/efeitos dos fármacos , Lasers Semicondutores/uso terapêutico , Azul de Metileno/análogos & derivados , Azul de Metileno/farmacologia , Mariposas , Pirimidinas/farmacologia
2.
J Photochem Photobiol B ; 164: 1-12, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27623154

RESUMO

The search for alternatives to control microorganisms is necessary both in clinical and agricultural areas. Antimicrobial photodynamic treatment (APDT) is a promising light-based approach that can be used to control both human and plant pathogenic fungi. In the present study, we evaluated the effects of photodynamic treatment with red light and four phenothiazinium photosensitizers (PS): methylene blue (MB), toluidine blue O (TBO), new methylene blue N (NMBN) and the phenothiazinium derivative S137 on ungerminated and germinated microconidia of Fusarium oxysporum, F. moniliforme, and F. solani. APDT with each PS killed efficiently both the quiescent ungerminated microconidia and metabolically active germinated microconidia of the three Fusarium species. Washing away the unbound PS from the microconidia (both ungerminated and germinated) before red light exposure reduced but did not prevent the effect of APDT. Subcelullar localization of PS in ungerminated and germinated microconidia and the effects of photodynamic treatment on cell membranes were also evaluated in the three Fusarium species. APDT with MB, TBO, NMBN or S137 increased the membrane permeability in microconidia and APDT with NMBN or S137 increased the lipids peroxidation in microconidia of the three Fusarium species. These findings expand the understanding of photodynamic inactivation of filamentous fungi with phenothiazinium PS.


Assuntos
Fusarium/efeitos dos fármacos , Fenotiazinas/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fusarium/classificação , Fusarium/fisiologia , Germinação , Fenotiazinas/farmacocinética , Fármacos Fotossensibilizantes/farmacocinética , Especificidade da Espécie , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...