Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Leukoc Biol ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552209

RESUMO

The elusive nature of the liver immune system in newborns remains an important challenge, casting a shadow over our understanding of how to effectively treat and prevent diseases in children. Therefore, deeper exploration into the intricacies of neonatal immunology might be crucial for improved pediatric healthcare. Using liver intravital microscopy, we unveiled a significant population of granulocytes in the hepatic parenchyma of fetuses and newborns. Utilizing high-dimensional immunophenotyping, we showed dynamic alterations predominantly in granulocytes during neonatal development. Liver intravital microscopy from birth through adulthood captures real-time dynamics, showing a substantial presence of Ly6G + cells that persisted significantly up to 2 weeks of age. Using CyTOF, we characterized neonatal Ly6G + cells as neutrophils, confirmed by morphology and immunohistochemistry. Surprisingly, the embryonic liver hosts a distinct population of neutrophils established as early as the second gestational week, challenging conventional notions about their origin. Additionally, we observed that embryonic neutrophils occupy preferentially the extravascular space, indicating their early establishment within the liver. Hepatic neutrophils in embryos and neonates form unique cell clusters, persisting during the initial days of life, while reduced migratory capabilities in neonates are observed, potentially compensating with increased reactive oxygen species (ROS) release in response to stimuli. Finally, in vivo imaging of acute neutrophil behavior in a newborn mouse, subjected to focal liver necrosis, unveils that neonatal neutrophils exhibit a reduced migratory response. The study provides unprecedented insights into the intricate interplay of neutrophils within the liver, shedding light on their functional and dynamic characteristics during development.

2.
Front Immunol ; 13: 1002919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531990

RESUMO

Spleen is a key organ for immunologic surveillance, acting as a firewall for antigens and parasites that spread through the blood. However, how spleen leukocytes evolve across the developmental phase, and how they spatially organize and interact in vivo is still poorly understood. Using a novel combination of selected antibodies and fluorophores to image in vivo the spleen immune environment, we described for the first time the dynamics of immune development across postnatal period. We found that spleens from adults and infants had similar numbers and arrangement of lymphoid cells. In contrast, splenic immune environment in newborns is sharply different from adults in almost all parameters analysed. Using this in vivo approach, B cells were the most frequent subtype throughout the development. Also, we revealed how infections - using a model of malaria - can change the spleen immune profile in adults and infants, which could become the key to understanding different severity grades of infection. Our new imaging solutions can be extremely useful for different groups in all areas of biological investigation, paving a way for new intravital approaches and advances.


Assuntos
Malária , Baço , Adulto , Humanos , Recém-Nascido , Microscopia Intravital , Linfócitos , Linfócitos B
3.
Nutrition ; 81: 110938, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32739658

RESUMO

OBJECTIVES: The aim of this study was to investigate putative different outcomes on the development of non-alcoholic fatty liver disease in mice using fat options regularly used in human nutrition. METHODS: Male C57BL/6 mice were fed a control diet, and four different high-fat diets (HFD: 40% calories from fat; Research Diet, Inc., New Brunswick, New Jersey, USA) for 16 and 30 wk. HFDs had different common fat sources, including trans-fat, non-trans-fat palm oil (Primex-Z), palm oil alone, and corn oil alone. Mice were sacrificed and samples were collected for analysis. RESULTS: Using an unprecedented combination of in vivo imaging with immunometabolic phenotyping, we revealed that a HFD induced a major increase in hepatic lipid droplet deposition compared with control mice, being significantly higher in Primex-Z-fed mice. All HFD mice had similar or less weight gain as control mice; however, Primex-Z ingestion led to a higher increase in adiposity index (~90% increase) compared with other fat sources. Gene expression of isolated liver immune cells revealed large changes in expression of several inflammatory pathways, which were also more elevated in Primex-Z-fed mice, including Tnf (~20-fold), Il1b (~60-fold), and Tgfb (2.5-fold). Immunophenotyping and in vivo analysis showed that the frequency of hepatic immune cells was also disturbed during different HFD contents, rendering not only Kupffer cell depletion, but also reduced bacterial arresting ability. CONCLUSION: Different fat dietary sources imprint different immune and metabolic effects in the liver during consumption of an HFD. The present data highlighted that Primex-Z-a novel non-trans-fat-is not only able to damage hepatocytes, but also to impair liver ability to clear blood-borne infections.


Assuntos
Infecções Bacterianas , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia
4.
JHEP Rep ; 2(4): 100117, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32695965

RESUMO

BACKGROUND & AIMS: The precise determination of non-alcoholic fatty liver disease (NAFLD) onset is challenging. Thus, the initial hepatic responses to fat accumulation, which may be fundamental to our understanding of NAFLD evolution and clinical outcomes, are largely unknown. Herein, we chronologically mapped the immunologic and metabolic changes in the liver during the early stages of fatty liver disease in mice and compared this with human NAFLD samples. METHODS: Liver biopsies from patients with NAFLD (NAFLD activity score [NAS] 2-3) were collected for gene expression profiling. Mice received a high-fat diet for short periods to mimic initial steatosis and the hepatic immune response was investigated using a combination of confocal intravital imaging, gene expression, cell isolation, flow cytometry and bone marrow transplantation assays. RESULTS: We observed major immunologic changes in patients with NAS 2-3 and in mice in the initial stages of NAFLD. In mice, these changes significantly increased mortality rates upon drug-induced liver injury, as well as predisposing mice to bacterial infections. Moreover, deletion of Toll-like receptor 4 in liver cells dampened tolerogenesis, particularly in Kupffer cells, in the initial stages of dietary insult. CONCLUSION: The hepatic immune system acts as a sentinel for early and minor changes in hepatic lipid content, mounting a biphasic response upon dietary insult. Priming of liver immune cells by gut-derived Toll-like receptor 4 ligands plays an important role in liver tolerance in initial phases, but continuous exposure to insults may lead to damage and reduced ability to control infections. LAY SUMMARY: Fatty liver is a very common form of hepatic disease, leading to millions of cases of cirrhosis every year. Patients are often asymptomatic until becoming very sick. Therefore, it is important that we expand our knowledge of the early stages of disease pathogenesis, to enable early diagnosis. Herein, we show that even in the early stages of fatty liver disease, there are significant alterations in genes involved in the inflammatory response, suggesting that the hepatic immune system is disturbed even following minor and undetectable changes in liver fat content. This could have implications for the diagnosis and clinical management of fatty liver disease.

5.
J Leukoc Biol ; 108(4): 1199-1213, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32422690

RESUMO

Neutrophils were classically described as powerful effectors of acute inflammation, and their main purpose was assumed to be restricted to pathogen killing through production of oxidants. As consequence, neutrophils also may lead to significant collateral damage to the healthy tissues, and after performing these tasks, these leukocytes are supposed to die within tissues. However, there is a growing body of evidence showing that neutrophils also play a pivotal role in the resolution phases of inflammation, because they can modulate tissue environment due to secretion of different kind of cytokines. Drug-induced liver injury (DILI) is a worldwide concern being one of the most prevalent causes of liver transplantation, and is well established that there is an intense neutrophil recruitment into necrotic liver during DILI. However, information if such abundant granulocyte infiltration is also linked to the tissue repairing phase of hepatic injury is still largely elusive. Here, we investigated the dynamics of neutrophil trafficking within blood, bone marrow, and liver during hepatic inflammation, and how changes in their gene expression profile could drive the resolution events during acetaminophen (APAP)-induced liver injury. We found that neutrophils remained viable during longer periods following liver damage, because they avidly patrolled necrotic areas and up-regulated pro-resolutive genes, including Tgfb, Il1r2, and Fpr2. Adoptive transference of "resolutive neutrophils" harvested from livers at 72 h after injury to mice at the initial phases of injury (6 h after APAP) significantly rescued organ injury. Thus, we provide novel insights on the role of neutrophils not only in the injury amplification, but also in the resolution phases of inflammation.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/imunologia , Fígado/imunologia , Infiltração de Neutrófilos , Neutrófilos/imunologia , Acetaminofen/efeitos adversos , Acetaminofen/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Feminino , Fígado/patologia , Camundongos , Neutrófilos/patologia , Receptores de Formil Peptídeo/imunologia , Receptores Tipo II de Interleucina-1/imunologia , Fator de Crescimento Transformador beta/imunologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
6.
Cells ; 7(12)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30563238

RESUMO

Acetaminophen (APAP) poisoning is one of the leading causes of acute hepatic failure and liver transplantation is often the only lifesaving alternative. During the course of hepatocyte necrosis, an intense accumulation of neutrophils is often observed within the liver microenvironment. Despite the classic idea that neutrophil accumulation in tissues causes collateral tissue damage, there is a growing body of evidence showing that neutrophils can also orchestrate the resolution of inflammation. In this work, drug-induced liver injury was induced by oral administration of APAP and pharmacological intervention was made 12 h after this challenge. Liver injury and repair kinetics were evaluated by a novel combination of enzyme quantifications, ELISA, specific antagonists of neutrophil enzymes and confocal intravital microscopy. We have demonstrated that neutrophil infiltration is not only involved in injury amplification, but also in liver tissue repair after APAP-induced liver injury. In fact, while neutrophil depletion led to reduced hepatic necrosis during APAP poisoning, injury recovery was also delayed in neutropenic mice. The mechanisms underlying the neutrophil reparative role involved rapid degranulation and matrix metalloproteinases (MMPs) activity. Our data highlights the crucial role of neutrophils, in particular for MMPs, in the resolution phase of APAP-induced inflammatory response.

7.
J Hepatol ; 69(6): 1294-1307, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30171870

RESUMO

BACKGROUND & AIMS: The liver is the main hematopoietic site in embryos, becoming a crucial organ in both immunity and metabolism in adults. However, how the liver adapts both the immune system and enzymatic profile to challenges in the postnatal period remains elusive. We aimed to identify the mechanisms underlying this adaptation. METHODS: We analyzed liver samples from mice on day 0 after birth until adulthood. Human biopsies from newborns and adults were also examined. Liver immune cells were phenotyped using mass cytometry (CyTOF) and expression of several genes belonging to immune and metabolic pathways were measured. Mortality rate, bacteremia and hepatic bacterial retention after E. coli challenge were analyzed using intravital and in vitro approaches. In a set of experiments, mice were prematurely weaned and the impact on gene expression of metabolic pathways was evaluated. RESULTS: Human and mouse newborns have a sharply different hepatic cellular composition and arrangement compared to adults. We also found that myeloid cells and immature B cells primarily compose the neonatal hepatic immune system. Although neonatal mice were more susceptible to infections, a rapid evolution to an efficient immune response was observed. Concomitantly, newborns displayed a reduction of several macronutrient metabolic functions and the normal expression level of enzymes belonging to lipid and carbohydrate metabolism was reached around the weaning period. Interestingly, early weaning profoundly disturbed the expression of several hepatic metabolic pathways, providing novel insights into how dietary schemes affect the metabolic maturation of the liver. CONCLUSION: In newborns, the immune and metabolic profiles of the liver are dramatically different to those of the adult liver, which can be explained by the differences in the liver cell repertoire and phenotype. Also, dietary and antigen cues may be crucial to guide liver development during the postnatal phase. LAY SUMMARY: Newborns face major challenges in the extra-uterine life. In fact, organs need to modify their cellular composition and gene expression profile in order to adapt to changes in both microbiota and diet throughout life. The liver is interposed between the gastrointestinal system and the systemic circulation, being the destination of all macronutrients and microbial products from the gut. Therefore, it is expected that delicately balanced mechanisms govern the transformation of a neonatal liver to a key organ in adults.


Assuntos
Recém-Nascido , Fígado/imunologia , Fígado/metabolismo , Adulto , Animais , Animais Recém-Nascidos , Biópsia , Infecções por Escherichia coli/imunologia , Feminino , Hepatócitos , Humanos , Metabolismo dos Lipídeos , Fígado/citologia , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Células Progenitoras Mieloides/imunologia , Células Progenitoras Mieloides/fisiologia , Valor Nutritivo/fisiologia , Fagócitos/imunologia , Células Precursoras de Linfócitos B/imunologia , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...