Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 27(29): 35875-35888, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31916170

RESUMO

The burning of biomass in pizza ovens can be an important source of air pollution. Fine particulate matter represents one of the most aggressive pollutants to human health, besides the potential to interfere with global radiative balance. A study in real-world condition was performed in three pizzerias in São Paulo city. Two of the pizzerias used eucalyptus timber logs and one used wooden briquettes. The results from the three pizzerias revealed high average concentrations of PM2.5: 6171.2 µg/m3 at the exit of the chimney and 68.2 µg/m3 in indoor areas. The burning of briquette revealed lower concentrations of PM2.5. BC represented approximately 20% and 30% of the PM2.5 mass concentration in indoor and at chimney exhaust, respectively. Among the trace elements, potassium, chlorine and sulphur were the most prevalent in terms of concentration. Scanning electron microscopy (SEM) analysis revealed particles with an individual and spherical morphology, i.e. the conglomeration of spherical particles, flattened particles in the formation of fibres, the overlapping of layers and the clustering of particles with sponge-like qualities. The average emission factors for PM2.5 and BC due to the burning of logs were 0.38 g/kg and 0.23 g/kg, respectively. The total emissions of PM2.5 and BC were 116.73 t/year and 70.65 t/year, respectively, in the burning of timber logs.


Assuntos
Poluentes Atmosféricos/análise , Madeira/química , Brasil , Cidades , Monitoramento Ambiental , Humanos , Material Particulado/análise
2.
J Environ Manage ; 202(Pt 1): 55-68, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28719822

RESUMO

This study quantified the effects of traffic restrictions on diesel fuel heavy vehicles (HVs) on the air quality of the Bandeirantes corridor using hourly data obtained by continuous monitoring of traffic and air quality at sites located on this avenue. The study addressed the air quality of a city impacted by vehicular emissions and that PM10 and NOX concentrations are mainly due to diesel burning. Data collection was split into two time periods, a period of no traffic constraint on HVs (Nov 2008 and 2009) and a period of constraint (Nov 2010, 2011 and 2012). We found that pollutants on this corridor, mainly PM10 and NOX, decreased significantly during the period from 2008 to 2012 (28 and 43%, 15.8 and 86.9 ppb) as a direct consequence of HV traffic restrictions (a 72% reduction). Rebound effects in the form of increased traffic of light vehicles (LVs) during this time had impacts on the concentration levels, explaining the differences between rates of reduction in HV traffic and pollutants. Reductions in the number of trucks resulted in longer travel times and increased traffic congestion as a consequence of the modal shift towards LVs. We found that a 51% decrease in PM10 (28.8 µg m-3) was due to a reduction in HV traffic (vehicle emissions were estimated to be 71% of total sources, 40.1 µg m-3). This percentage was partially offset by 10% more PM10 emissions related to an increase in LV traffic, while other causes, such as climatic conditions, contributed to a 13% increase in PM10 concentrations. The relationships analyzed in this research served to highlight the need to apply urban transport policies aimed at decreasing pollutant concentrations in São Paulo, especially in heavily congested urban corridors on working days.


Assuntos
Poluição do Ar , Veículos Automotores , Emissões de Veículos , Poluentes Atmosféricos , Brasil , Cidades , Monitoramento Ambiental , Material Particulado
3.
Environ Monit Assess ; 189(1): 6, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27921226

RESUMO

The air quality in the Metropolitan Area of São Paulo (MASP) is primarily determined by the local pollution source contribution, mainly the vehicular fleet, but there is a concern about the role of remote sources to the fine mode particles (PM2.5) concentration and composition. One of the most important remote sources of atmospheric aerosol is the biomass burning emissions from São Paulo state's inland and from the central and north portions of Brazil. This study presents a synergy of different measurements of atmospheric aerosol chemistry and optical properties in the MASP in order to show how they can be used as a tool to identify particles from local and remote sources. For the clear identification of the local and remote source contribution, aerosol properties measurements at surface level were combined with vertical profiles information. Over 15 days in the austral winter of 2012, particulate matter (PM) was collected using a cascade impactor and a Partisol sampler in São Paulo City. Mass concentrations were determined by gravimetry, black carbon concentrations by reflectance, and trace element concentrations by X-ray fluorescence. Aerosol optical properties were studied using a multifilter rotating shadowband radiometer (MFRSR), a Lidar system and satellite data. Optical properties, concentrations, size distributions, and elemental composition of atmospheric particles were strongly related and varied according to meteorological conditions. During the sampling period, PM mean mass concentrations were 17.4 ± 10.1 and 15.3 ± 6.9 µg/m3 for the fine and coarse fractions, respectively. The mean aerosol optical depths at 415 nm and Ångström exponent (AE) over the whole period were 0.29 ± 0.14 and 1.35 ± 0.11, respectively. Lidar ratios reached values of 75 sr. The analyses of the impacts of an event of biomass burning smoke transport to the São Paulo city revealed significant changing on local aerosol concentrations and optical parameters. The identification of the source contributions, local and remote, to the fine particles in MASP can be more precisely achieved when particle size composition and distribution, vertical profile of aerosols, and air mass trajectories are analyzed in combination.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/análise , Material Particulado/análise , Poluentes Atmosféricos/química , Biomassa , Brasil , Cidades , Monitoramento Ambiental , Fenômenos Ópticos , Tamanho da Partícula , Material Particulado/química , Estações do Ano , Fuligem/análise , Fuligem/química
4.
Environ Int ; 89-90: 212-21, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26891184

RESUMO

Ambient PM2.5 pollution is a substantial threat to public health in global megacities. This paper reviews the PM2.5 pollution of 45 global megacities in 2013, based on mass concentration from official monitoring networks and composition data reported in the literature. The results showed that the five most polluted megacities were Delhi, Cairo, Xi'an, Tianjin and Chengdu, all of which had an annual average concentration of PM2.5 greater than 89µg/m(3). The five cleanest megacities were Miami, Toronto, New York, Madrid and Philadelphia, the annual averages of which were less than 10µg/m(3). Spatial distribution indicated that the highly polluted megacities are concentrated in east-central China and the Indo-Gangetic Plain. Organic matter and SNA (sum of sulfate, nitrate and ammonium) contributed 30% and 36%, respectively, of the average PM2.5 mass for all megacities. Notable seasonal variation of PM2.5 polluted days was observed, especially for the polluted megacities of China and India, resulting in frequent heavy pollution episodes occurring during more polluted seasons such as winter. Marked differences in PM2.5 pollution between developing and developed megacities require more effort on local emissions reduction as well as global cooperation to address the PM2.5 pollution of those megacities mainly in Asia.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Urbanização , Poluentes Atmosféricos/química , Ásia , Cidades , Europa (Continente) , América do Norte , Tamanho da Partícula , Material Particulado/química , Estações do Ano
5.
J Air Waste Manag Assoc ; 64(5): 519-28, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24941700

RESUMO

Several studies indicate that mortality and morbidity can be well correlated to atmospheric aerosol concentrations with aerodynamic diameter less than 2.5 microm (PM2.5). In this work the PM2.5 at Recife city was analyzed as part of a main research project (INAIRA) to evaluate the air pollution impact on human health in six Brazilian metropolitan areas. The average concentration, for 309 samples (24-hr), from June 2007 to July 2008, was 7.3 microg/m3, with an average of 1.1 microg/m3 of black carbon. The elemental concentrations of samples were obtained by x-ray fluorescence. The concentrations were then used for characterizing the aerosol, and also were employed for receptor modelling to identify the major local sources of PM2.5. Positive matrix factorization analysis indicated six main factors, with four being associated to soil dust, vehicles and sea spray, metallurgical activities, and biomass burning, while for a chlorine factor, and others related to S, Ca, Br, and Na, we could make no specific source association. Principal component analysis also indicated six dominant factors, with some specific characteristics. Four factors were associated to soil dust, vehicles, biomass burning, and sea spray, while for the two others, a chlorine- and copper-related factor and a nickel-related factor, it was not possible to do a specific source association. The association of the factors to the likely sources was possible thanks to meteorological analysis and sources information. Each model, although giving similar results, showed factors' peculiarities, especially for source apportionment. The observed PM2.5 concentration levels were acceptable, notwithstanding the high urbanization of the metropolitan area, probably due to favorable conditions for air pollution dispersion. More than a valuable historical register these results should be very important for the next analysis, which will correlate health data, PM2.5 levels, and sources contributions in the context of the six studied Brazilian metropolises.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Brasil , Humanos , Fatores de Tempo , Tempo (Meteorologia)
6.
Environ Res ; 131: 145-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24721132

RESUMO

BACKGROUND: Particulate matter (PM) is potentially harmful to health and related to genotoxic events, an increase in the number of hospitalizations and mortality from respiratory and cardiovascular diseases. The present study conducted the first characterization of elemental composition and polycyclic aromatic hydrocarbon (PAH) analysis of PM, as well as the biomonitoring of genotoxic activity associated to artisanal cashew nut roasting, an important economic and social activity worldwide. METHODS: The levels of PM2.5 and black carbon were also measured by gravimetric analysis and light reflectance. The elemental composition was determined using X-ray fluorescence spectrometry and PAH analysis was carried out by gas chromatography-mass spectrometry. Genotoxic activity was measured by the Tradescantia pallida micronucleus bioassay (Trad-MCN). Other biomarkers of DNA damage, such as nucleoplasmic bridges and nuclear fragments, were also quantified. RESULTS: The mean amount of PM2.5 accumulated in the filters (January 2124.2 µg/m(3); May 1022.2 µg/m(3); September 1291.9 µg/m(3)), black carbon (January 363.6 µg/m(3); May 70 µg/m(3); September 69.4 µg/m(3)) and concentrations of Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br and Pb were significantly higher than the non-exposed area. Biomass burning tracers K, Cl, and S were the major inorganic compounds found. Benzo[k]fluoranthene, indene[1,2,3-c,d]pyrene, benzo[ghi]perylene, phenanthrene and benzo[b]fluoranthene were the most abundant PAHs. Mean benzo[a]pyrene-equivalent carcinogenic power values showed a significant cancer risk. The Trad-MCN bioassay revealed an increase in micronucleus frequency, 2-7 times higher than the negative control and significantly higher in all the months analyzed, possibly related to the mutagenic PAHs found. CONCLUSIONS: This study demonstrated that artisanal cashew nut roasting is a serious occupational problem, with harmful effects on workers׳ health. Those involved in this activity are exposed to higher PM2.5 concentrations and to 12 PAHs considered potentially mutagenic and/or carcinogenic. The Trad-MCN with T. pallida was sensitive and efficient in evaluating the genotoxicity of the components and other nuclear alterations may be used as effective biomarkers of DNA damage.


Assuntos
Anacardium , Culinária , Exposição Ocupacional/análise , Material Particulado/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Brasil , Testes para Micronúcleos , Tradescantia
7.
Air Qual Atmos Health ; 5(1): 63-77, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22408694

RESUMO

In urban areas of Brazil, vehicle emissions are the principal source of fine particulate matter (PM(2.5)). The World Health Organization air quality guidelines state that the annual mean concentration of PM(2.5) should be below 10 µg m(-3). In a collaboration of Brazilian institutions, coordinated by the University of São Paulo School of Medicine and conducted from June 2007 to August 2008, PM(2.5) mass was monitored at sites with high traffic volumes in six Brazilian state capitals. We employed gravimetry to determine PM(2.5) mass concentrations, reflectance to quantify black carbon concentrations, X-ray fluorescence to characterize elemental composition, and ion chromatography to determine the composition and concentrations of anions and cations. Mean PM(2.5) concentrations and proportions of black carbon (BC) in the cities of São Paulo, Rio de Janeiro, Belo Horizonte, Curitiba, Recife, and Porto Alegre were 28.1 ± 13.6 µg m(-3) (38% BC), 17.2 ± 11.2 µg m(-3) (20% BC), 14.7 ± 7.7 µg m(-3) (31% BC), 14.4 ± 9.5 µg m(-3) (30% BC), 7.3 ± 3.1 µg m(-3) (26% BC), and 13.4 ± 9.9 µg m(-3) (26% BC), respectively. Sulfur and minerals (Al, Si, Ca, and Fe), derived from fuel combustion and soil resuspension, respectively, were the principal elements of the PM(2.5) mass. We discuss the long-term health effects for each metropolitan region in terms of excess mortality risk, which translates to greater health care expenditures. This information could prove useful to decision makers at local environmental agencies.

8.
Air Qual Atmos Health ; 5(1): 79-88, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22408695

RESUMO

In Brazil, the principal source of air pollution is the combustion of fuels (ethanol, gasohol, and diesel). In this study, we quantify the contributions that vehicle emissions make to the urban fine particulate matter (PM(2.5)) mass in six state capitals in Brazil, collecting data for use in a larger project evaluating the impact of air pollution on human health. From winter 2007 to winter 2008, we collected 24-h PM(2.5) samples, employing gravimetry to determine PM(2.5) mass concentrations; reflectance to quantify black carbon concentrations; X-ray fluorescence to characterize elemental composition; and ion chromatography to determine the composition and concentrations of anions and cations. Mean PM(2.5) concentrations in the cities of São Paulo, Rio de Janeiro, Belo Horizonte, Curitiba, Porto Alegre, and Recife were 28, 17.2, 14.7, 14.4, 13.4, and 7.3 µg/m(3), respectively. In São Paulo and Rio de Janeiro, black carbon explained approximately 30% of the PM(2.5) mass. We used receptor models to identify distinct source-related PM(2.5) fractions and correlate those fractions with daily mortality rates. Using specific rotation factor analysis, we identified the following principal contributing factors: soil and crustal material; vehicle emissions and biomass burning (black carbon factor); and fuel oil combustion in industries (sulfur factor). In all six cities, vehicle emissions explained at least 40% of the PM(2.5) mass. Elemental composition determination with receptor modeling proved an adequate strategy to identify air pollution sources and to evaluate their short- and long-term effects on human health. Our data could inform decisions regarding environmental policies vis-à-vis health care costs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...