Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Stroke Res ; 15(2): 339-351, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-36717476

RESUMO

Environmental enrichment (EE) refers to different forms of stimulation, where the environment is designed to improve the levels of sensory, cognitive, and motor stimuli, inducing stroke recovery in animal models. Stroke is a leading cause of mortality and neurological disability among older adults, hence the importance of developing strategies to improve recovery for such patients. This review provides an update on recent findings, compiling information regarding the parameters affected by EE exposure in both preclinical and clinical studies. During stroke recovery, EE exposure has been shown to improve both the cognitive and locomotor aspects, inducing important neuroplastic alterations, increased angiogenesis and neurogenesis, and modified gene expression, among other effects. There is a need for further research in this field, particularly in those aspects where the evidence is inconclusive. Moreover, it is necessary refine and adapt the EE paradigms for application in human patients.


Assuntos
Meio Ambiente , Acidente Vascular Cerebral , Animais , Humanos , Idoso , Acidente Vascular Cerebral/terapia
2.
Toxicol Lett ; 361: 43-53, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35367327

RESUMO

Paraquat (PQ) is a widely used herbicide that can cross the dopaminergic neuronal membrane, accumulate in mitochondria and damage complex I of the electron transport chain, leading to neuronal death. In Drosophila melanogaster, PQ exposure leads to the development of parkinsonism and is a classical model for studying Parkinson's Disease (PD). Muscle mitochondrial dysfunction, affecting survival and locomotion, is described in familial PD in D. melanogaster mutants. However, no study has shown the effects of PQ-induced parkinsonism in D. melanogaster regarding muscle ultrastructure and locomotor behavior at different ages. Thus, we evaluated survival, locomotion, and morphological parameters of mitochondria and myofibrils using transmission electron microscopy in 2 and 15-day-old D. melanogaster, treated with different PQ doses: control, 10, 50, 100, 150, and 200 mM. PQ100mM presented 100% lethality in 15-day-old D. melanogaster, while in 2-day-old animals PQ150mM produced 20% lethality. Bradykinesia was only observed in 15-day-old D. melanogaster treated with PQ10 mM and PQ50 mM. However, these results are unlikely to be associated with changes to morphology. Taken together, our data indicate pathophysiological differences between PQ-induced parkinsonism and familial parkinsonism in D. melanogaster (resultant from gene mutations), demonstrating for the first time a differential susceptibility to PQ in two developmental stages.


Assuntos
Herbicidas , Transtornos Parkinsonianos , Animais , Antioxidantes/farmacologia , Drosophila melanogaster/genética , Herbicidas/toxicidade , Paraquat/toxicidade , Transtornos Parkinsonianos/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...