Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Public Health ; 24(1): 1088, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641571

RESUMO

BACKGROUND: Estimating rates of disease importation by travellers is a key activity to assess both the risk to a country from an infectious disease emerging elsewhere in the world and the effectiveness of border measures. We describe a model used to estimate the number of travellers infected with SARS-CoV-2 into Canadian airports in 2021, and assess the impact of pre-departure testing requirements on importation risk. METHODS: A mathematical model estimated the number of essential and non-essential air travellers infected with SARS-CoV-2, with the latter requiring a negative pre-departure test result. The number of travellers arriving infected (i.e. imported cases) depended on air travel volumes, SARS-CoV-2 exposure risk in the departure country, prior infection or vaccine acquired immunity, and, for non-essential travellers, screening from pre-departure molecular testing. Importation risk was estimated weekly from July to November 2021 as the number of imported cases and percent positivity (PP; i.e. imported cases normalised by travel volume). The impact of pre-departure testing was assessed by comparing three scenarios: baseline (pre-departure testing of all non-essential travellers; most probable importation risk given the pre-departure testing requirements), counterfactual scenario 1 (no pre-departure testing of fully vaccinated non-essential travellers), and counterfactual scenario 2 (no pre-departure testing of non-essential travellers). RESULTS: In the baseline scenario, weekly imported cases and PP varied over time, ranging from 145 to 539 cases and 0.15 to 0.28%, respectively. Most cases arrived from the USA, Mexico, the United Kingdom, and France. While modelling suggested that essential travellers had a higher weekly PP (0.37 - 0.65%) than non-essential travellers (0.12 - 0.24%), they contributed fewer weekly cases (62 - 154) than non-essential travellers (84 - 398 per week) given their lower travel volume. Pre-departure testing was estimated to reduce imported cases by one third (counterfactual scenario 1) to one half (counterfactual scenario 2). CONCLUSIONS: The model results highlighted the weekly variation in importation by traveller group (e.g., reason for travel and country of departure) and enabled a framework for measuring the impact of pre-departure testing requirements. Quantifying the contributors of importation risk through mathematical simulation can support the design of appropriate public health policy on border measures.


Assuntos
Viagem Aérea , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Canadá/epidemiologia , Viagem , França
2.
Diagnostics (Basel) ; 13(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37761350

RESUMO

OBJECTIVES: Ventilator-associated pneumonia (VAP) is a severe care-related disease. The Centers for Disease Control defined the diagnosis criteria; however, the pediatric criteria are mainly subjective and retrospective. Clinical decision support systems have recently been developed in healthcare to help the physician to be more accurate for the early detection of severe pathology. We aimed at developing a predictive model to provide early diagnosis of VAP at the bedside in a pediatric intensive care unit (PICU). METHODS: We performed a retrospective single-center study at a tertiary-care pediatric teaching hospital. All patients treated by invasive mechanical ventilation between September 2013 and October 2019 were included. Data were collected in the PICU electronic medical record and high-resolution research database. Development of the clinical decision support was then performed using open-access R software (Version 3.6.1®). MEASUREMENTS AND MAIN RESULTS: In total, 2077 children were mechanically ventilated. We identified 827 episodes with almost 48 h of mechanical invasive ventilation and 77 patients who suffered from at least one VAP event. We split our database at the patient level in a training set of 461 patients free of VAP and 45 patients with VAP and in a testing set of 199 patients free of VAP and 20 patients with VAP. The Imbalanced Random Forest model was considered as the best fit with an area under the ROC curve from fitting the Imbalanced Random Forest model on the testing set being 0.82 (95% CI: (0.71, 0.93)). An optimal threshold of 0.41 gave a sensitivity of 79.7% and a specificity of 72.7%, with a positive predictive value (PPV) of 9% and a negative predictive value of 99%, and with an accuracy of 79.5% (95% CI: (0.77, 0.82)). CONCLUSIONS: Using machine learning, we developed a clinical predictive algorithm based on clinical data stored prospectively in a database. The next step will be to implement the algorithm in PICUs to provide early, automatic detection of ventilator-associated pneumonia.

3.
Pediatr Pulmonol ; 58(10): 2832-2840, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37530484

RESUMO

BACKGROUND: Mathematical models based on the physiology when programmed as a software can be used to teach cardiorespiratory physiology and to forecast the effect of various ventilatory support strategies. We developed a cardiorespiratory simulator for children called "SimulResp." The purpose of this study was to evaluate the quality of SimulResp. METHODS: SimulResp quality was evaluated on accuracy, robustness, repeatability, and reproducibility. Blood gas values (pH, PaCO2 , PaO2,  and SaO2 ) were simulated for several subjects with different characteristics and in different situations and compared to expected values available as reference. The correlation between reference and simulated data was evaluated by the coefficient of determination and Intraclass correlation coefficient. The agreement was evaluated with the Bland & Altman analysis. RESULTS: SimulResp produced healthy child physiological values within normal range (pH 7.40 ± 0.5; PaCO2 40 ± 5 mmHg; PaO2 90 ± 10 mmHg; SaO2 97 ± 3%) starting from a weight of 25-35 kg, regardless of ventilator support. SimulResp failed to simulate accurate values for subjects under 25 kg and/or affected with pulmonary disease and mechanically ventilated. Based on the repeatability was considered as excellent and the reproducibility as mild to good. SimulResp's prediction remains stable within time. CONCLUSIONS: The cardiorespiratory simulator SimulResp requires further development before future integration into a clinical decision support system.


Assuntos
Pneumopatias , Ventiladores Mecânicos , Humanos , Criança , Adolescente , Reprodutibilidade dos Testes , Simulação por Computador , Software , Respiração Artificial
4.
Can Commun Dis Rep ; 48(10): 438-448, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38162959

RESUMO

Background: Non-pharmaceutical interventions (NPIs) aim to reduce the incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections mostly by limiting contacts between people where virus transmission can occur. However, NPIs limit social interactions and have negative impacts on economic, physical, mental and social well-being. It is, therefore, important to assess the impact of NPIs on reducing the number of coronavirus disease 2019 (COVID-19) cases and hospitalizations to justify their use. Methods: Dynamic regression models accounting for autocorrelation in time series data were used with data from six Canadian provinces (British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, Québec) to assess 1) the effect of NPIs (measured using a stringency index) on SARS-CoV-2 transmission (measured by the effective reproduction number), and 2) the effect of the number of hospitalized COVID-19 patients on the stringency index. Results: Increasing stringency index was associated with a statistically significant decrease in the transmission of SARS-CoV-2 in Alberta, Saskatchewan, Manitoba, Ontario and Québec. The effect of stringency on transmission was time-lagged in all of these provinces except for Ontario. In all provinces except for Saskatchewan, increasing hospitalization rates were associated with a statistically significant increase in the stringency index. The effect of hospitalization on stringency was time-lagged. Conclusion: These results suggest that NPIs have been effective in Canadian provinces, and that their implementation has been, in part, a response to increasing hospitalization rates of COVID-19 patients.

5.
Can Commun Dis Rep ; 46(6): 192-197, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32673377

RESUMO

BACKGROUND: The rise of big data and related predictive modelling based on machine learning algorithms over the last two decades have provided new opportunities for disease surveillance and public health preparedness. Big data come with the promise of faster generation of and access to more precise information, potentially facilitating predictive precision in public health ("precision public health"). As an example, we considered forecasting of the future course of the monthly cryptosporidiosis incidence in Ontario. METHODS: The traditional statistical approach to forecasting is the seasonal autoregressive integrated moving-average (SARIMA) model. We applied SARIMA and an artificial neural network (ANN) approach, specifically a feed-forward neural network, to predict monthly cryptosporidiosis incidence in Ontario in 2017 using 2005-2016 data as a training set. Both forecasting approaches are automated to make them relevant in a disease surveillance context. We compared the resulting forecasts using the root mean squared error (RMSE) and mean absolute error (MAE) as measures of predictive accuracy. RESULTS: Cryptosporidiosis is a seasonal disease, which peaks in Ontario in late summer. In this study, the SARIMA model and ANN forecasting approaches captured the seasonal pattern of cryptosporidiosis well. Contrary to similar studies reported in the literature, the ANN forecasts of cryptosporidiosis were slightly less accurate than the SARIMA model forecasts. CONCLUSION: The ANN and SARIMA approaches are suitable for automated forecasting of public health time series data from surveillance systems. Future studies should employ additional algorithms (e.g. random forests) and assess accuracy by using alternative diseases for case studies and conducting rigorous simulation studies. Difference between the forecasts from the machine learning algorithm, that is, the ANN, and the statistical learning model, that is, the SARIMA, should be considered with respect to philosophical differences between the two approaches.

6.
Sci Rep ; 8(1): 6066, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29666455

RESUMO

Promising multi-dose HIV vaccine regimens are being tested in trials in South Africa. We estimated the potential epidemiological and economic impact of HIV vaccine campaigns compared to continuous vaccination, assuming that vaccine efficacy is transient and dependent on immune response. We used a dynamic economic mathematical model of HIV transmission calibrated to 2012 epidemiological data to simulate vaccination with anticipated antiretroviral treatment scale-up in South Africa. We estimate that biennial vaccination with a 70% efficacious vaccine reaching 20% of the sexually active population could prevent 480,000-650,000 HIV infections (13.8-15.3% of all infections) over 10 years. Assuming a launch price of $15 per dose, vaccination was found to be cost-effective, with an incremental cost-effectiveness ratio of $13,746 per quality-adjusted life-year as compared to no vaccination. Increasing vaccination coverage to 50% will prevent more infections but is less likely to achieve cost-effectiveness. Campaign vaccination is consistently more effective and costs less than continuous vaccination across scenarios. Results suggest that a partially effective HIV vaccine will have substantial impact on the HIV epidemic in South Africa and offer good value if priced less than $105 for a five-dose series. Vaccination campaigns every two years may offer greater value for money than continuous vaccination reaching the same coverage level.


Assuntos
Vacinas contra a AIDS/uso terapêutico , Infecções por HIV/prevenção & controle , Programas de Imunização , Vacinas contra a AIDS/economia , Adolescente , Adulto , Análise Custo-Benefício , Feminino , Infecções por HIV/economia , Infecções por HIV/epidemiologia , Humanos , Programas de Imunização/economia , Programas de Imunização/métodos , Masculino , Pessoa de Meia-Idade , Modelos Econômicos , Anos de Vida Ajustados por Qualidade de Vida , África do Sul/epidemiologia , Resultado do Tratamento , Adulto Jovem
7.
Infect Dis Model ; 3: 85-96, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30839944

RESUMO

BACKGROUND: The epidemiological tipping point ratio (TPR) has been suggested as a useful indicator to monitor the scale-up of antiretroviral treatment (ART) programmes and determine when scale-up is sufficient to control the epidemic. TPR has been defined as the ratio of yearly number of new HIV infections to the yearly number of new ART initiations or to the yearly net increase in the number of people on ART. It has been used to rank the progress of treatment programmes across countries, with the objective of reaching a TPR value under 1. Our study aims to assess if TPR alone can be used as an indicator of ART success across settings by comparing the expected changes in HIV incidence and ART coverage when TPR is maintained constant over time. In particular, we focus on the effect of ART initiation timing (emphasis on ART being initiated early or late during HIV progression) on the interpretation of the TPR. METHODS: We used a dynamic model of HIV transmission in South Africa representing ART rollout leading to universal treatment in 2017. The model is calibrated to HIV incidence, HIV prevalence and ART coverage in 2012 in South Africa, and 1000 simulations are selected for the base-case scenario. To measure the effect of TPR, we simulate TPR-preserving interventions, maintaining TPR (yearly number of new ART initiations denominator) at the value observed in 2019 (between 0.65 and 1.25) for 15 years. We compare ART coverage and HIV incidence across TPR values and across strategies in which ART access is prioritized differently. In a secondary analysis, we illustrate the sensitivity of new ART initiations to ART retention, and we compare both definitions of the TPR. RESULTS: Our analysis shows that HIV incidence reduction is weakly correlated to TPR: the same reduction in HIV incidence (15%) can be achieved by implementing the same strategy with a wide range of TPR maintained (0.65-1.12). Assuming high retention in ART, TPR-preserving strategies prioritizing early ART initiation yield greater reduction in HIV incidence than strategies where most individuals initiate ART late. High ART coverage is associated with low HIV incidence and it can be reached with a TPR below or equal to one with strategies favoring early ART initiation. Low ART retention over time results in higher HIV incidence even if TPR is maintained low. If ART retention is low, strategies prioritizing late ART initiation are associated with lower HIV incidence than strategies where ART is initiated early. Maintaining a fixed TPR value based on the net increase in people on ART gives higher HIV incidence reduction and requires fast ART scale-up. CONCLUSION: Our analysis suggests that the TPR is not an adequate indicator of ART programme impact, without information on ART coverage and retention. Achieving early initiation and adherence to treatment to improve ART coverage might be as important as attaining a specific TPR target. Comparisons of TPR in different settings should account for differences in epidemic conditions.

8.
Neural Comput ; 28(11): 2461-2473, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27557102

RESUMO

Error backpropagation in networks of spiking neurons (SpikeProp) shows promise for the supervised learning of temporal patterns. However, its widespread use is hindered by its computational load and occasional convergence failures. In this letter, we show that the neuronal firing time equation at the core of SpikeProp can be solved analytically using the Lambert W function, offering a marked reduction in execution time over the step-based method used in the literature. Applying this analytical method to SpikeProp, we find that training time per epoch can be reduced by 12% to 56% under different experimental conditions. Finally, this work opens the way for further investigations of SpikeProp's convergence behavior.

9.
Neural Netw ; 60: 84-95, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25168628

RESUMO

In this work, we propose a new approximation method to perform error backpropagation in a quantron network while avoiding the silent neuron problem that usually affects networks of realistic neurons. In our experiments, we train quantron networks to solve the XOR problem and other nonlinear classification problems. We achieve this while using less parameters than the number necessary to solve the same problems with networks of perceptrons or spiking neurons.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Neurônios/fisiologia , Algoritmos
10.
Int J Neural Syst ; 22(3): 1250010, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23627626

RESUMO

The quantron is a hybrid neuron model related to perceptrons and spiking neurons. The activation of the quantron is determined by the maximum of a sum of input signals, which is difficult to use in classical learning algorithms. Thus, training the quantron to solve classification problems requires heuristic methods such as direct search. In this paper, we present an approximation of the quantron trainable by gradient search. We show this approximation improves the classification performance of direct search solutions. We also compare the quantron and the perceptron's performance in solving the IRIS classification problem.


Assuntos
Inteligência Artificial , Aprendizagem , Modelos Neurológicos , Modelos Teóricos , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Algoritmos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...