Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Multimed Tools Appl ; : 1-29, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36570730

RESUMO

SARS-CoV-2 is the causative agent of COVID-19 and leaves characteristic impressions on chest Computed Tomography (CT) images in infected patients and this analysis is performed by radiologists through visual reading of lung images, and failures may occur. In this article, we propose a classification model, called Wavelet Convolutional Neural Network (WCNN) that aims to improve the differentiation of images of patients with COVID-19 from images of patients with other lung infections. The WCNN model was based on a Convolutional Neural Network (CNN) and wavelet transform. The model proposes a new input layer added to the neural network, which was called Wave layer. The hyperparameters values were defined by ablation tests. WCNN was applied to chest CT images to images from two internal and one external repositories. For all repositories, the average results of Accuracy (ACC), Sensitivity (Sen) and Specificity (Sp) were calculated. Subsequently, the average results of the repositories were consolidated, and the final values were ACC = 0.9819, Sen = 0.9783 and Sp = 0.98. The WCNN model uses a new Wave input layer, which standardizes the network input, without using data augmentation, resizing and segmentation techniques, maintaining the integrity of the tomographic image analysis. Thus, applications developed based on WCNN have the potential to assist radiologists with a second opinion in the analysis.1.

2.
J Alzheimers Dis ; 89(3): 977-991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35988218

RESUMO

BACKGROUND: The population aging increased the prevalence of brain diseases, like Alzheimer's disease (AD). Early identification of individuals with higher odds of cognitive decline is essential to maintain quality of life. Imaging evaluation of individuals at risk of cognitive decline includes biomarkers extracted from brain positron emission tomography (PET) and structural magnetic resonance imaging (MRI). OBJECTIVE: We propose investigating ensemble models to classify groups in the aging cognitive decline spectrum by combining features extracted from single imaging modalities and combinations of imaging modalities (FDG+AMY+MRI, and a PET ensemble). METHODS: We group imaging data of 131 individuals into four classes related to the individuals' cognitive assessment in baseline and follow-up: stable cognitive non-impaired; individuals converting to mild cognitive impairment (MCI) syndrome; stable MCI; and Alzheimer's clinical syndrome. We assess the performance of four algorithms using leave-one-out cross-validation: decision tree classifier, random forest (RF), light gradient boosting machine (LGBM), and categorical boosting (CAT). The performance analysis of models is evaluated using balanced accuracy before and after using Shapley Additive exPlanations with recursive feature elimination (SHAP-RFECV) method. RESULTS: Our results show that feature selection with CAT or RF algorithms have the best overall performance in discriminating early cognitive decline spectrum mainly using MRI imaging features. CONCLUSION: Use of CAT or RF algorithms with SHAP-RFECV shows good discrimination of early stages of aging cognitive decline, mainly using MRI image features. Further work is required to analyze the impact of selected brain regions and their correlation with cognitive decline spectrum.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Qualidade de Vida
3.
Front Digit Health ; 3: 662343, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35112097

RESUMO

Both reverse transcription-PCR (RT-PCR) and chest X-rays are used for the diagnosis of the coronavirus disease-2019 (COVID-19). However, COVID-19 pneumonia does not have a defined set of radiological findings. Our work aims to investigate radiomic features and classification models to differentiate chest X-ray images of COVID-19-based pneumonia and other types of lung patterns. The goal is to provide grounds for understanding the distinctive COVID-19 radiographic texture features using supervised ensemble machine learning methods based on trees through the interpretable Shapley Additive Explanations (SHAP) approach. We use 2,611 COVID-19 chest X-ray images and 2,611 non-COVID-19 chest X-rays. After segmenting the lung in three zones and laterally, a histogram normalization is applied, and radiomic features are extracted. SHAP recursive feature elimination with cross-validation is used to select features. Hyperparameter optimization of XGBoost and Random Forest ensemble tree models is applied using random search. The best classification model was XGBoost, with an accuracy of 0.82 and a sensitivity of 0.82. The explainable model showed the importance of the middle left and superior right lung zones in classifying COVID-19 pneumonia from other lung patterns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...