Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(7)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35884805

RESUMO

The bile acid tauroursodeoxycholic acid (TUDCA) reduces cell death under oxidative stress and inflammation. Implants of bone marrow-derived stromal cells (bmSC) are currently under investigation in clinical trials of spinal cord injury (SCI). Since cell death of injected bmSC limits the efficacy of this treatment, the cytoprotective effect of TUDCA may enhance its benefit. We therefore studied the therapeutic effect of TUDCA and its use as a combinatorial treatment with human bmSC in a rat model of SCI. A spinal cord contusion injury was induced at thoracic level T9. Treatment consisted of i.p. injections of TUDCA alone or in combination with one injection of human bmSC into the cisterna magna. The recovery of motor functions was assessed during a surveillance period of six weeks. Biochemical and histological analysis of spinal cord tissue confirmed the anti-inflammatory activity of TUDCA. Treatment improved the recovery of autonomic bladder control and had a positive effect on motor functions in the subacute phase, however, benefits were only transient, such that no significant differences between vehicle and TUDCA-treated animals were observed 1-6 weeks after the lesion. Combinatorial treatment with TUDCA and bmSC failed to have an additional effect compared to treatment with bmSC only. Our data do not support the use of TUDCA as a treatment of SCI.

2.
CNS Neurosci Ther ; 26(5): 504-517, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31867846

RESUMO

AIMS: Mutations in DNA/RNA-binding factor (fused-in-sarcoma) FUS and superoxide dismutase-1 (SOD-1) cause amyotrophic lateral sclerosis (ALS). They were reproduced in SOD-1-G93A (SOD-1) and new FUS[1-359]-transgenic (FUS-tg) mice, where inflammation contributes to disease progression. The effects of standard disease therapy and anti-inflammatory treatments were investigated using these mutants. METHODS: FUS-tg mice or controls received either vehicle, or standard ALS treatment riluzole (8 mg/kg/day), or anti-inflammatory drug a selective blocker of cyclooxygenase-2 celecoxib (30 mg/kg/day) for six weeks, or a single intracerebroventricular (i.c.v.) infusion of Neuro-Cells (a preparation of 1.39 × 106 mesenchymal and hemopoietic human stem cells, containing 5 × 105 of CD34+ cells), which showed anti-inflammatory properties. SOD-1 mice received i.c.v.-administration of Neuro-Cells or vehicle. RESULTS: All FUS-tg-treated animals displayed less marked reductions in weight gain, food/water intake, and motor deficits than FUS-tg-vehicle-treated mice. Neuro-Cell-treated mutants had reduced muscle atrophy and lumbar motor neuron degeneration. This group but not celecoxib-FUS-tg-treated mice had ameliorated motor performance and lumbar expression of microglial activation marker, ionized calcium-binding adapter molecule-1 (Iba-1), and glycogen-synthase-kinase-3ß (GSK-3ß). The Neuro-Cells-treated-SOD-1 mice showed better motor functions than vehicle-treated-SOD-1 group. CONCLUSION: The neuropathology in FUS-tg mice is sensitive to standard ALS treatments and Neuro-Cells infusion. The latter improves motor outcomes in two ALS models possibly by suppressing microglial activation.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Anti-Inflamatórios/administração & dosagem , Transplante de Células-Tronco Hematopoéticas/métodos , Mediadores da Inflamação/antagonistas & inibidores , Transtornos das Habilidades Motoras/terapia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Células Cultivadas , Mediadores da Inflamação/metabolismo , Injeções Intraventriculares/métodos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Transtornos das Habilidades Motoras/genética , Transtornos das Habilidades Motoras/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Resultado do Tratamento
3.
Parkinsonism Relat Disord ; 20 Suppl 1: S150-3, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24262169

RESUMO

Parkinson's disease is a devastating, progressive neurodegenerative disorder that affects the central and peripheral nervous systems. Although recent advancements have led to a better understanding of the disorder, there is currently no long-term disease-modifying strategy. Recently, preclinical data have identified the significant effects of pluripotent stem cell grafting in 6-OHDA and MPTP animal models of motor parkinsonism; there have also been some clinical data in patients with motor parkinsonism. Pluripotent stem cells can nestle in affected organs and can differentiate into a variety of cells, including neural (dopamine producing) cells. Depending on the environment into which they are grafted, these stem cells can also influence immune responses by regulating the activity of B-cells, T-cells, and NK-cells. Pluripotent stem cells can also produce chemotrophins, including BDNF (brain-derived neurotrophic factor), GDNF (glial-derived neurotrophic factor), NGF (nerve growth factor), TGF-ß (transforming growth factor-ß), IGF-1 (insulin-like growth factor 1), NT-3 (neurotrophin 3), and SCF-1 (stem cell factor 1). Influencing these trophic factors can influence plasticity. This article explores the potential of pluripotent stem cells in the treatment of PD. We will explore the utilization of pluripotent stem cells in the immunomodulation of B-cells, T-cells and NK-cells, the transdifferentiation of pluripotent stems cells into DA-cells, and the secretion of trophic factors and its relation to plasticity. We will also cover how best to conduct a clinical trial, which stem cells can be safely used in patients, what are the methods of induction before application, and how to re-apply stem cells in patients by intravasal, intrathecal or intracerebral methods. Finally, we will describe how to objectively record the clinical results.


Assuntos
Transtornos Parkinsonianos/cirurgia , Transplante de Células-Tronco/métodos , Células-Tronco/fisiologia , Animais , Humanos
4.
J Neural Transm (Vienna) ; 120(1): 91-102, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22842676

RESUMO

Ischemic and traumatic insults of the central nervous system both result in definite chronic disability, only to some extent responsive to rehabilitation. Recently, the application of autologous stem cells (fresh bone marrow-derived mononuclear cells including mesenchymal and hematopoietic stem cells) was suggested to provide a strategy to further improve neurological recovery in these disorders. During the acute phase, stem cells act mainly by neuroprotection with prevention of apoptosis, whereas during the chronic situation they provide neurorestoration by transdifferentiation and/or the secretion of neurotrophic factors. To reach these goals, in the acute phase, stem cells (10 million mononuclear cells per kg body weight) might be best applied intravenously, as during the first 7 days after the lesion, the blood-brain barrier permits passage of cells from the blood into the brain or the spinal cord. In the more chronic situation, though, those cells might be applied best intrathecally by lumbar puncture. Based on the reported results so far, it seems justified to develop well-designed clinical double-blind trials in chronic spinal cord injury and ischemic stroke patients, as efficacy and safety concerns might not be answered by preclinical studies.


Assuntos
Células-Tronco Adultas/fisiologia , Doenças do Sistema Nervoso Central/cirurgia , Transplante de Células-Tronco/métodos , Doenças do Sistema Nervoso Central/etiologia , Humanos , Isquemia/complicações , Transplante Autólogo
5.
J Neural Transm (Vienna) ; 120(1): 65-73, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23180301

RESUMO

Stem cells seem very promising in the treatment of degenerative neurological diseases for which there are currently no or limited therapeutic strategies. However, their clinical application meets many regulatory hurdles. This article gives an overview of stem cells, their potential healing capacities as well as their identified and potential risks, such as tumor formation, unwanted immune responses and the transmission of adventitious agents. As there is no clinical experience with embryonic and induced pluripotent stem cells (as the result of their unacceptable risk on tumor formation), most attention will be paid to fresh autologous adult stem cells (ASCs). To evaluate eventual clinical benefits, preclinical studies are essential, though their value is limited as in these studies, various types of stem cells, with different histories of procurement and culturing, are applied in various concentrations by various routes of administration. On top of that, in most animal studies allogenic human, thus non-autologous, stem cells are applied, which might mask the real effects. More reliable, though small-sized, clinical trials with autologous ASCs did show satisfying clinical benefits in regenerative medicine, without major health concerns. One should wonder, though, why it is so hard to get compelling evidence for the healing and renewing capacities of these stem cells when these cells indeed are really essential for tissue repair during life. Why so many hurdles have to be taken before health authorities such as the European Medicine Agency (EMA) and/or the Food and Drug Administration (FDA) approve stem cells in the treatment of (especially no-option) patients.


Assuntos
Células-Tronco Adultas/fisiologia , Doenças do Sistema Nervoso/cirurgia , Transplante de Células-Tronco , Animais , Diferenciação Celular , Movimento Celular , Humanos , Transplante Autólogo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...