Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e16208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842042

RESUMO

Since the industrial revolution, oceans have become substantially noisier. The noise increase is mainly caused by increased shipping, resource exploration, and infrastructure development affecting marine life at multiple levels, including behavior and physiology. Together with increasing anthropogenic noise, climate change is altering the thermal structure of the oceans, which in turn might affect noise propagation. During this century, we are witnessing an increase in seawater temperature and a decrease in ocean pH. Ocean acidification will decrease sound absorption at low frequencies (<10 kHz), enhancing long-range sound propagation. At the same time, temperature changes can modify the sound speed profile, leading to the creation or disappearance of sound ducts in which sound can propagate over large distances. The worldwide effect of climate change was explored for the winter and summer seasons using the (2018 to 2022) and (2094 to 2098, projected) atmospheric and seawater temperature, salinity, pH and wind speed as input. Using numerical modelling, we here explore the impact of climate change on underwater sound propagation. The future climate variables were taken from a Community Earth System Model v2 (CESM2) simulations forced under the concentration-driven SSP2-4.5 and SSP5-8.5 scenarios. The sound modeling results show, for future climate change scenarios, a global increase of sound speed at different depths (5, 125, 300, and 640 m) except for the North Atlantic Ocean and the Norwegian Sea, where in the upper 125 m sound speed will decrease by as much as 40 m s-1. This decrease in sound speed results in a new sub-surface duct in the upper 200 m of the water column allowing ship noise to propagate over large distances (>500 km). In the case of the Northeast Atlantic Ocean, this sub-surface duct will only be present during winter, leading to similar total mean square pressure level (SPLtot) values in the summer for both (2018 to 2022) and (2094 to 2098). We observed a strong and similar correlation for the two climate change scenarios, with an increase of the top 200 m SPLtot and a slowdown of Atlantic Meridional Overturning Circulation (AMOC) leading to an increase of SPLtot at the end of the century by 7 dB.


Assuntos
Mudança Climática , Água do Mar , Água do Mar/química , Concentração de Íons de Hidrogênio , Oceanos e Mares , Temperatura
2.
PLoS One ; 18(8): e0289122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585361

RESUMO

Rising atmospheric CO2 shifts the marine inorganic carbonate system and decreases seawater pH, a process often abbreviated to 'ocean acidification'. Since acidification decreases the saturation state for crystalline calcium carbonate (e.g., calcite and aragonite), rising dissolved CO2 levels will either increase the energy demand for calcification or reduce the total amount of CaCO3 precipitated. Here we report growth of two large benthic photosymbiont-bearing foraminifera, Heterostegina depressa and Amphistegina lessonii, cultured at four different ocean acidification scenarios (400, 700, 1000 and 2200 ppm atmospheric pCO2). Using the alkalinity anomaly technique, we calculated the amount of calcium carbonate precipitated during the incubation and found that both species produced the most carbonate at intermediate CO2 levels. The chamber addition rates for each of the conditions were also determined and matched the changes in alkalinity. These results were complemented by micro-CT scanning of selected specimens to visualize the effect of CO2 on growth. The increased chamber addition rates at elevated CO2 concentrations suggest that both foraminifera species can take advantage of the increased availability of the inorganic carbon, despite a lower saturation state. This adds to the growing number of reports showing the variable response of foraminifera to elevated CO2 concentrations, which is likely a consequence of differences in calcification mechanisms.


Assuntos
Foraminíferos , Dióxido de Carbono/análise , Água do Mar/química , Calcificação Fisiológica , Carbonato de Cálcio , Carbonatos , Concentração de Íons de Hidrogênio , Oceanos e Mares
3.
Sci Rep ; 9(1): 758, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679551

RESUMO

Coral reefs are threatened by a multitude of environmental and biotic influences. Among these, excavating sponges raise particular concern since they bore into coral skeleton forming extensive cavities which lead to weakening and loss of reef structures. Sponge bioerosion is achieved by a combination of chemical dissolution and mechanical chip removal and ocean acidification has been shown to accelerate bioerosion rates. However, despite the ecological relevance of sponge bioerosion, the exact chemical conditions in which dissolution takes place and how chips are removed remain elusive. Using fluorescence microscopy, we show that intracellular pH is lower at etching sites compared to ambient seawater and the sponge's tissue. This is realised through the extension of filopodia filled with low intracellular pH vesicles suggesting that protons are actively transported into this microenvironment to promote CaCO3 dissolution. Furthermore, fusiform myocyte-like cells forming reticulated pathways were localised at the interface between calcite and sponge. Such cells may be used by sponges to contract a conductive pathway to remove chips possibly instigated by excess Ca2+ at the boring site. The mechanism underlying CaCO3 dissolution by sponges provides new insight into how environmental conditions can enhance dissolution and improves predictions of future rates of coral dissolution due to sponge activity.


Assuntos
Antozoários/metabolismo , Recifes de Corais , Hidrobiologia , Poríferos/metabolismo , Animais , Antozoários/anatomia & histologia , Antozoários/química , Carbonato de Cálcio/metabolismo , Ecossistema , Humanos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Poríferos/fisiologia , Água do Mar/química
4.
PeerJ ; 6: e5966, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30533295

RESUMO

Anthropogenic pressures threaten the health of coral reefs globally. Some of these pressures directly affect coral functioning, while others are indirect, for example by promoting the capacity of bioeroders to dissolve coral aragonite. To assess the coral reef status, it is necessary to validate community-scale measurements of metabolic and geochemical processes in the field, by determining fluxes from enclosed coral reef patches. Here, we investigate diurnal trends of carbonate chemistry, dissolved organic carbon, oxygen, and nutrients on a 20 m deep coral reef patch offshore from the island of Saba, Dutch Caribbean by means of tent incubations. The obtained trends are related to benthic carbon fluxes by quantifying net community calcification (NCC) and net community production (NCP). The relatively strong currents and swell-induced near-bottom surge at this location caused minor seawater exchange between the incubated reef and ambient water. Employing a compensating interpretive model, the exchange is used to our advantage as it maintains reasonably ventilated conditions, which conceivably prevents metabolic arrest during incubation periods of multiple hours. No diurnal trends in carbonate chemistry were detected and all net diurnal rates of production were strongly skewed towards respiration suggesting net heterotrophy in all incubations. The NCC inferred from our incubations ranges from -0.2 to 1.4 mmol CaCO3 m-2 h-1 (-0.2 to 1.2 kg CaCO3 m-2 year-1) and NCP varies from -9 to -21.7 mmol m-2 h-1 (net respiration). When comparing to the consensus-based ReefBudget approach, the estimated NCC rate for the incubated full planar area (0.36 kg CaCO3 m-2 year-1) was lower, but still within range of the different NCC inferred from our incubations. Field trials indicate that the tent-based incubation as presented here, coupled with an appropriate interpretive model, is an effective tool to investigate, in situ, the state of coral reef patches even when located in a relatively hydrodynamic environment.

5.
Nat Commun ; 8: 14145, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28128216

RESUMO

Ongoing ocean acidification is widely reported to reduce the ability of calcifying marine organisms to produce their shells and skeletons. Whereas increased dissolution due to acidification is a largely inorganic process, strong organismal control over biomineralization influences calcification and hence complicates predicting the response of marine calcifyers. Here we show that calcification is driven by rapid transformation of bicarbonate into carbonate inside the cytoplasm, achieved by active outward proton pumping. Moreover, this proton flux is maintained over a wide range of pCO2 levels. We furthermore show that a V-type H+ ATPase is responsible for the proton flux and thereby calcification. External transformation of bicarbonate into CO2 due to the proton pumping implies that biomineralization does not rely on availability of carbonate ions, but total dissolved CO2 may not reduce calcification, thereby potentially maintaining the current global marine carbonate production.


Assuntos
Organismos Aquáticos/metabolismo , Calcificação Fisiológica , Foraminíferos/metabolismo , Prótons , Água do Mar/química , Animais , Ciclo do Carbono/fisiologia , Dióxido de Carbono/metabolismo , Carbonatos/metabolismo , Citoplasma/metabolismo , Concentração de Íons de Hidrogênio , Oceanos e Mares , Bombas de Próton/metabolismo
6.
Sci Rep ; 4: 7517, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25515588

RESUMO

On March 11(th), 2011 the Mw 9.0 2011 Tohoku-Oki earthquake resulted in a tsunami which caused major devastation in coastal areas. Along the Japanese NE coast, tsunami waves reached maximum run-ups of 40 m, and travelled kilometers inland. Whereas devastation was clearly visible on land, underwater impact is much more difficult to assess. Here, we report unexpected results obtained during a research cruise targeting the seafloor off Shimokita (NE Japan), shortly (five months) after the disaster. The geography of the studied area is characterized by smooth coastline and a gradually descending shelf slope. Although high-energy tsunami waves caused major sediment reworking in shallow-water environments, investigated shelf ecosystems were characterized by surprisingly high benthic diversity and showed no evidence of mass mortality. Conversely, just beyond the shelf break, the benthic ecosystem was dominated by a low-diversity, opportunistic fauna indicating ongoing colonization of massive sand-bed deposits.


Assuntos
Ecossistema , Sedimentos Geológicos , Desastres , Terremotos , Geografia , Japão , Tsunamis
7.
Mar Micropaleontol ; 113: 56-64, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26089590

RESUMO

Magnesium, incorporated in foraminiferal calcite (Mg/CaCC), is used intensively to reconstruct past seawater temperatures but, in addition to temperature, the Mg/CaCC of foraminiferal tests also depends on the ratio of Mg and Ca in seawater (Mg/CaSW). The physiological mechanisms responsible for these proxy relationships are still unknown. This culture study investigates the impact of different seawater [Mg2 +] on calcification in two benthic foraminiferal species precipitating contrasting Mg/CaCC: Ammonia aomoriensis, producing low-Mg calcite and Amphistegina lessonii, producing intermediate-Mg calcite. Foraminiferal growth and test thickness were determined and, Mg/Ca was analyzed using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). Results show that at present-day seawater Mg/CaSW of ~ 5, both species have highest growth rates, reflecting their adaptation to modern seawater element concentrations. Test thickness is not significantly affected by different Mg/CaSW. The relationship between Mg/CaSW and Mg/CaCC shows a distinct positive y-axis intercept, possibly reflecting at least two processes involved in foraminiferal biomineralization. The associated Mg partition (DMg) changes non-linearly with increasing Mg/CaSW, hence suggesting that the DMg is best described by an exponential function approaching an asymptote.

8.
J Phycol ; 47(4): 829-38, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27020019

RESUMO

Coccolithophores, especially the abundant, cosmopolitan species Emiliania huxleyi (Lohmann) W. W. Hay et H. P. Mohler, are one of the main driving forces of the oceanic carbonate pump and contribute significantly to global carbon cycling, due to their ability to calcify. A recent study indicates that termination of diploid blooms by viral infection induces life-cycle transition, and speculation has arisen about the role of the haploid, noncalcifying stage in coccolithophore ecology. To explore gene expression patterns in both life-cycle stages, haploid and diploid cells of E. huxleyi (RCC 1217 and RCC 1216) were acclimated to limiting and saturating photon flux densities. Transcriptome analyses were performed to assess differential genomic expression related to different ploidy levels and acclimation light intensities. Analyses indicated that life-cycle stages exhibit different properties of regulating genome expression (e.g., pronounced gene activation and gene silencing in the diploid stage), proteome maintenance (e.g., increased turnover of proteins in the haploid stage), as well as metabolic processing (e.g., pronounced primary metabolism and motility in the haploid stage and calcification in the diploid stage). Furthermore, higher abundances of transcripts related to endocytotic and digestive machinery were observed in the diploid stage. A qualitative feeding experiment indicated that both life-cycle stages are capable of particle uptake (0.5 µm diameter) in late-stationary growth phase. Results showed that the two life-cycle stages represent functionally distinct entities that are evolutionarily shaped to thrive in the environment they typically inhabit.

9.
Proc Natl Acad Sci U S A ; 106(36): 15374-8, 2009 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-19706891

RESUMO

Surface seawaters are supersaturated with respect to calcite, but high concentrations of magnesium prevent spontaneous nucleation and growth of crystals. Foraminifera are the most widespread group of calcifying organisms and generally produce calcite with a low Mg content, indicating that they actively remove Mg(2+) from vacuolized seawater before calcite precipitation. However, one order of foraminifera has evolved a calcification pathway, by which it produces calcite with a very high Mg content, suggesting that these species do not alter the Mg/Ca ratio of vacuolized seawater considerably. The cellular mechanism that makes it possible to precipitate calcite at high Mg concentrations, however, has remained unknown. Here we demonstrate that they are able to elevate the pH at the site of calcification by at least one unit above seawater pH and, thereby, overcome precipitation-inhibition at ambient Mg concentrations. A similar result was obtained for species that precipitate calcite with a low Mg concentration, suggesting that elevating the pH at the site of calcification is a widespread strategy among foraminifera to promote calcite precipitation. Since the common ancestor of these two groups dates back to the Cambrian, our results would imply that this physiological mechanism has evolved over half a billion years ago. Since foraminifera rely on elevating the intracellular pH for their calcification, our results show that ongoing ocean acidification can result in a decrease of calcite production by these abundant calcifyers.


Assuntos
Evolução Biológica , Calcificação Fisiológica/fisiologia , Carbonato de Cálcio/metabolismo , Foraminíferos/metabolismo , Foraminíferos/fisiologia , Concentração de Íons de Hidrogênio , Japão , Magnésio/metabolismo , Microscopia de Fluorescência , Água do Mar/química , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...