Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE J Biomed Health Inform ; 22(4): 1104-1113, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29969404

RESUMO

This paper presents algorithms designed for one-dimensional (1-D) and 2-D surface electromyographic (S-EMG) signal compression. The 1-D approach is a wavelet transform based encoder applied to isometric and dynamic S-EMG signals. An adaptive estimation of the spectral shape is used to carry out dynamic bit allocation for vector quantization of transformed coefficients. Thus, an entropy coding is applied to minimize redundancy in quantized coefficient vector and to pack the data. In the 2-D approach algorithm, the isometric or dynamic S-EMG signal is properly segmented and arranged to build a 2-D representation. The high efficient video codec is used to encode the signal, using 16-bit-depth precision, all possible coding/prediction unit sizes, and all intra-coding modes. The encoders are evaluated with objective metrics, and a real signal data bank is used. Furthermore, performance comparisons are also shown in this paper, where the proposed methods have outperformed other efficient encoders reported in the literature.


Assuntos
Compressão de Dados/métodos , Eletromiografia/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Humanos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-19162607

RESUMO

Hepatocellular carcinoma is one of the most common malignancies worldwide. During radiofrequency hepatic ablation, the tumor is heated by means of radiofrequency energy. The heating causes necrosis of the malignant tumor. Thus, if the procedure is successful it can cure the patient. Studies have shown that recurrences occur after the treatment and these recurrences frequently take place next to the hepatic artery and portal vein. The recurrences occur due to the high convective loss on these vessels. This work proposed, developed and tested an instrument for the measurement of the convective heat transfer coefficient (h) in large vessels. Moreover, this work developed a mechanical simulator and validated an equation developed by Consiglieri et al, which analytically determines the value of h. The instrument was tested using a mechanical simulator that reproduces the flow conditions and the geometry of large vessels in the liver. A flow velocity of 0.2 m/s was simulated in order to mock the typical flow at the portal vein. The average value of h using the experimental apparatus was 2130+/-40 W.m(-2).K(-1) (mean+/-SD). The results showed that the error of the proposed method is approximately 22%. This work showed that the instrument can be used for measuring h in vitro and that the Consiglieri's equation can be used to determine the convective heat transfer coefficient on large vessels.


Assuntos
Algoritmos , Artéria Hepática/fisiologia , Modelos Cardiovasculares , Condutividade Térmica , Termografia/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Termografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...