Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 94: 102937, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32693352

RESUMO

Xeroderma pigmentosum complementation group A (XPA), is defective in xeroderma pigmentosum patients, causing pre-disposition to skin cancer and neurological abnormalities, which is not well understood. Here, we analyzed the XPA-deficient cells transcriptional profile under oxidative stress. The imbalance in of ubiquitin-proteasome system (UPS) gene expression was observed in XPA-deficient cells and the involvement of nuclear factor erythroid 2-related factor-2 (NFE2L2) was indicated. Co-immunoprecipitation assays showed the interaction between XPA, apurinic-apyrimidinic endonuclease 1 (APE1) and NFE2L2 proteins. Decreased NFE2L2 protein expression and proteasome activity was also observed in XPA-deficient cells. The data suggest the involvement of the growth arrest and DNA-damage-inducible beta (GADD45ß) in NFE2L2 functions. Similar results were obtained in xpa-1 (RNAi) Caenorhabditis elegans suggesting the conservation of XPA and NFE2L2 interactions. In conclusion, stress response activation occurs in XPA-deficient cells under oxidative stress; however, these cells fail to activate the UPS cytoprotective response, which may contribute to XPA patient's phenotypes.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteostase , Ubiquitina/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Células Cultivadas , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Proteína de Xeroderma Pigmentoso Grupo A/genética
2.
Free Radic Biol Med ; 130: 8-22, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366059

RESUMO

Oxidative stress generated during inflammation is associated with a wide range of pathologies. Resveratrol (RESV) displays anti-inflammatory and antioxidant activities, being a candidate for the development of adjuvant therapies for several inflammatory diseases. Despite this potential, the cellular responses induced by RESV are not well known. In this work, transcriptomic analysis was performed following lipopolysaccharide (LPS) stimulation of monocyte cultures in the presence of RESV. Induction of an inflammatory response was observed after LPS treatment and the addition of RESV led to decreases in expression of the inflammatory mediators, tumor necrosis factor-alpha (TNF-α), interleukin-8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1), without cytotoxicity. RNA sequencing revealed 823 upregulated and 2098 downregulated genes (cutoff ≥2.0 or ≤-2.0) after RESV treatment. Gene ontology analysis showed that the upregulated genes were associated with metabolic processes and the cell cycle, consistent with normal cell growth and differentiation under an inflammatory stimulus. The downregulated genes were associated with inflammatory responses, gene expression, and protein modification. The prediction of master regulators using the iRegulon tool showed nuclear respiratory factor 1 (NRF1) and GA-binding protein alpha subunit (GABPA) as the main regulators of the downregulated genes. Using immunoprecipitation and protein expression assays, we observed that RESV was able to decrease protein acetylation patterns, such as acetylated apurinic/apyrimidinic endonuclease-1/reduction-oxidation factor 1 (APE1/Ref-1), and increase histone methylation. In addition, reductions in p65 (nuclear factor-kappa B (NF-κB) subunit) and lysine-specific histone demethylase-1 (LSD1) expression were observed. In conclusion, our data indicate that treatment with RESV caused significant changes in protein acetylation and methylation patterns, suggesting the induction of deacetylase and reduction of demethylase activities that mainly affect regulatory cascades mediated by NF-кB and Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling. NRF1 and GABPA seem to be the main regulators of the transcriptional profile observed after RESV treatment.


Assuntos
Anti-Inflamatórios/metabolismo , Antioxidantes/metabolismo , Inflamação/genética , Monócitos/imunologia , Resveratrol/metabolismo , Acetilação , Citocinas/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , NF-kappa B/metabolismo , Fator 1 Nuclear Respiratório/genética , Estresse Oxidativo , Análise de Sequência de RNA , Transdução de Sinais , Células U937
3.
J Neuroinflammation ; 14(1): 243, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233148

RESUMO

BACKGROUND: The production of reactive oxygen species (ROS) during pneumococcal meningitis (PM) leads to severe DNA damage in the neurons and is the major cause of cell death during infection. Hence, the use of antioxidants as adjuvant therapy has been investigated. Previous studies have demonstrated the possible participation of apurinic/apyrimidinic endonuclease (APE1) during PM. The aims of this study were to investigate the APE1 expression in the cortical and hippocampal tissues of infant Wistar rats infected with Streptococcus pneumoniae and its association with cell death and understand the role of vitamin B6 (vitB6) as a protective factor against cell death. METHODS: APE1 expression and oxidative stress markers were analyzed at two-time points, 20 and 24 h post infection (p.i.), in the cortex (CX) and hippocampus (HC) of rats supplemented with vitB6. Statistical analyses were performed by the nonparametric Kruskal-Wallis test using Dunn's post test. RESULTS: Our results showed high protein levels of APE1 in CX and HC of infected rats. In the CX, at 20 h p.i., vitB6 supplementation led to the reduction of expression of APE1 and apoptosis-inducing factor, while no significant changes in the transcript levels of caspase-3 were observed. Furthermore, levels of carbonyl content and glutamate in the CX were reduced by vitB6 supplementation at the same time point of 20 h p.i.. Since our data showed a significant effect of vitB6 on the CX at 20 h p.i. rather than that at 24 h p.i., we evaluated the effect of administering a second dose of vitB6 at 18 h p.i. and sacrifice at 24 h p.i.. Reduction in the oxidative stress and APE1 levels were observed, although the latter was not significant. Although the levels of APE1 was not significantly changed in the HC with vitB6 adjuvant therapy, vitB6 supplementation prevented the formation of the truncated form of APE1 (34 kDa) that is associated with apoptosis. CONCLUSIONS: Our data suggest that PM affects APE1 expression, which can be modulated by vitB6. Additionally, vitB6 contributes to the reduction of glutamate and ROS levels. Besides the potential to reduce cell death and oxidative stress during neuroinflammation, vitB6 showed enhanced effect on the CX than on the HC during PM.


Assuntos
Antioxidantes/farmacologia , Encéfalo/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Meningite Pneumocócica/metabolismo , Vitamina B 6/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Reparo do DNA , Meningite Pneumocócica/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
4.
Mutat Res ; 769: 119-31, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25771731

RESUMO

MutY is a glycosylase known for its role in DNA base excision repair (BER). It is critically important in the prevention of DNA mutations derived from 7,8-dihydro-8-oxoguanine (8-oxoG), which are the major lesions resulting from guanine oxidation. MutY has been described as a DNA repair enzyme in the GO system responsible for removing adenine residues misincorporated in 8-oxoG:A mispairs, avoiding G:C to T:A mutations. Further studies have shown that this enzyme binds to other mispairs, interacts with several enzymes, avoids different transversions/transitions in DNA, and is involved in different repair pathways. Additional activities have been reported for MutY, such as the repair of replication errors in newly synthesized DNA strands through its glycosylase activity. Moreover, MutY is a highly conserved enzyme present in several prokaryotic and eukaryotic organisms. MutY defects are associated with a hereditary colorectal cancer syndrome termed MUTYH-associated polyposis (MAP). Here, we have reviewed the roles of MutY in the repair of mispaired bases in DNA as well as its activities beyond the GO system.


Assuntos
DNA Glicosilases/fisiologia , Guanosina/análogos & derivados , Mutagênese/genética , Animais , Reparo do DNA/genética , Guanosina/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...