Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 21(7): 1299-1308, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35426610

RESUMO

The aim of this study was to evaluate photobiomodulation effects on mRNA relative levels from genes of base excision repair and genomic stabilization in heart tissue from an experimental model of acute lung injury by sepsis. For experimental procedure, animals were randomly assigned to six main groups: (1) control group was animals treated with intraperitoneal saline solution; (2) LASER-10 was animals treated with intraperitoneal saline solution and exposed to an infrared laser at 10 J cm-2; (3) LASER-20 was animals treated with intraperitoneal saline solution and exposed to an infrared laser at 20 J cm-2; (4) acute lung injury (ALI) was animals treated with intraperitoneal LPS (10 mg kg-1); (5) ALI-LASER10 was animals treated with intraperitoneal LPS (10 mg kg-1) and, after 4 h, exposed to an infrared laser at 10 J cm-2 and (6) ALI-LASER20 was animals treated with intraperitoneal LPS (10 mg kg-1) and, after 4 h, exposed to an infrared laser at 20 J cm-2. Irradiation was performed only once and animal euthanasias for analysis of mRNA relative levels by RT-qPCR. Our results showed that there was a reduction of mRNA relative levels from ATM gene and an increase of mRNA relative levels from P53 gene in the heart of animals with ALI when compared to the control group. In addition, there was an increase of mRNA relative levels from OGG1 and APE1 gene in hearts from animals with ALI when compared to the control group. After irradiation, an increase of mRNA relative levels from ATM and OGG1 gene was observed at 20 J cm-2. In conclusion, low-power laser modulates the mRNA relative levels from genes of base excision repair and genomic stabilization in the experimental model of acute lung injury evaluated.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Lesão Pulmonar Aguda/genética , Animais , Reparo do DNA , Genômica , Lasers , Lipopolissacarídeos/farmacologia , Pulmão/efeitos da radiação , Modelos Teóricos , RNA Mensageiro/genética , Solução Salina
2.
Photochem Photobiol Sci ; 20(5): 653-661, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34009632

RESUMO

Acute lung injury and acute respiratory distress syndrome can occur as a result of sepsis. Cardiac dysfunction is a serious component of multi-organ failure caused by severe sepsis. Telomere shortening is related to several heart diseases. Telomeres are associated with the shelterin protein complex, which contributes to the maintenance of telomere length. Low-power infrared lasers modulate mRNA levels of shelterin complex genes. This study aimed to evaluate effects of a low-power infrared laser on mRNA relative levels of genes involved in telomere stabilization and telomere length in heart tissue of an experimental model of acute lung injury caused by sepsis. Animals were divided into six groups, treated with intraperitoneal saline solution, saline solution and exposed to a low-power infrared laser at 10 J cm-2 and 20 J cm-2, lipopolysaccharide (LPS), and LPS and, after 4 h, exposed to a low-power infrared laser at 10 J cm-2 and 20 J cm-2. The laser exposure was performed only once. Analysis of mRNA relative levels and telomere length by RT-qPCR was performed. Telomere shortening and reduction in mRNA relative levels of TRF1 mRNA in heart tissues of LPS-induced ALI animals were observed. In addition, laser exposure increased the telomere length at 10 J cm-2 and modulated the TRF1 mRNA relative levels of at 20 J cm-2 in healthy animals. Although the telomeres were shortened and mRNA levels of TRF1 gene were increased in nontreated controls, the low-power infrared laser irradiation increased the telomere length at 10 J cm-2 in cardiac tissue of animals affected by LPS-induced acute lung injury, which suggests that telomere maintenance is a part of the photobiomodulation effect induced by infrared radiation.


Assuntos
Lesão Pulmonar Aguda/genética , Coração , Lasers , Sepse/genética , Telômero/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Lipopolissacarídeos , RNA Mensageiro/genética , Sepse/induzido quimicamente , Sepse/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...