Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 356(6): e2200653, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36922908

RESUMO

Vanillin is the main component of natural vanilla extract and is responsible for its flavoring properties. Besides its well-known applications as an additive in food and cosmetics, it has also been reported that vanillin can inhibit fungi of clinical interest, such as Candida spp., Cryptococcus spp., Aspergillus spp., as well as dermatophytes. Thus, the present work approaches the synthesis of a series of vanillin derivatives with 1,2,3-triazole fragments and the evaluation of their antifungal activities against Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis, Cryptococcus neoformans, Cryptococcus gattii, Trichophyton rubrum, and Trichophyton interdigitale strains. Twenty-two vanillin derivatives were obtained, with yields in the range of 60%-91%, from copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction between two terminal alkynes prepared from vanillin and different benzyl azides. In general, the evaluated compounds showed moderate activity against the microorganisms tested, with minimum inhibitory concentration (MIC) values ranging from 32 to >512 µg mL-1 . Except for compound 3b against the C. gattii R265 strain, all vanillin derivatives showed fungicidal activity for the yeasts tested. The predicted physicochemical and ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties for the compounds indicated favorable profiles for drug development. In addition, a four-dimensional structure-activity relationship (4D-SAR) analysis was carried out and provided useful insights concerning the structures of the compounds and their biological profile. Finally, molecular docking calculations showed that all compounds bind favorably at the lanosterol 14α-demethylase enzyme active site with binding energies ranging from -9.1 to -12.2 kcal/mol.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Antifúngicos/química , Triazóis/farmacologia , Testes de Sensibilidade Microbiana
2.
Eur J Med Chem ; 149: 98-109, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29499491

RESUMO

A simple and efficient Knoevenagel procedure for the synthesis of 2-arylidene indan-1,3-diones is herein reported. These compounds were prepared via ZrOCl2·8H2O catalyzed reactions of indan-1,3-dione with several aromatic aldehydes and using water as the solvent. The 2-arylidene indan-1,3-diones were obtained with 53%-95% yield within 10-45 min. The synthesized compounds were evaluated as inhibitors of the NS2B-NS3 protease of West Nile Virus (WNV). It was found that hydroxylated derivatives impaired enzyme activity with varying degrees of effectiveness. The most active hydroxylated derivatives, namely 2-(4-hydroxybenzylidene)-1H-indene-1,3(2H)-dione (14) and 2-(3,4-dihydroxybenzylidene)-1H-indene-1,3(2H)-dione (17), were characterized as noncompetitive enzymes inhibitors, with IC50 values of 11 µmol L-1 and 3 µmol L-1, respectively. Docking and electrostatic potential surfaces investigations provided insight on the possible binding mode of the most active compounds within an allosteric site.


Assuntos
Inibidores de Proteases/síntese química , Proteínas não Estruturais Virais/antagonistas & inibidores , Vírus do Nilo Ocidental/enzimologia , Sítio Alostérico , Catálise , Hidroxilação , Indanos/síntese química , Indanos/farmacologia , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Zircônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...