Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4286, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463881

RESUMO

Traumatic brain injury (TBI) is a leading cause of morbidity and mortality. The innate and adaptive immune responses play an important role in the pathogenesis of TBI. Gamma-delta (γδ) T cells have been shown to affect brain immunopathology in multiple different conditions, however, their role in acute and chronic TBI is largely unknown. Here, we show that γδ T cells affect the pathophysiology of TBI as early as one day and up to one year following injury in a mouse model. TCRδ-/- mice are characterized by reduced inflammation in acute TBI and improved neurocognitive functions in chronic TBI. We find that the Vγ1 and Vγ4 γδ T cell subsets play opposing roles in TBI. Vγ4 γδ T cells infiltrate the brain and secrete IFN-γ and IL-17 that activate microglia and induce neuroinflammation. Vγ1 γδ T cells, however, secrete TGF-ß that maintains microglial homeostasis and dampens TBI upon infiltrating the brain. These findings provide new insights on the role of different γδ T cell subsets after brain injury and lay down the principles for the development of targeted γδ T-cell-based therapy for TBI.


Assuntos
Lesões Encefálicas Traumáticas , Linfócitos Intraepiteliais , Masculino , Camundongos , Animais , Receptores de Antígenos de Linfócitos T gama-delta/genética , Subpopulações de Linfócitos T , Camundongos Endogâmicos C57BL
2.
Front Immunol ; 8: 167, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28275376

RESUMO

Autologous hematopoietic stem cell transplantation (AHSCT) increases C-peptide levels and induces insulin independence in patients with type 1 diabetes. This study aimed to investigate how clinical outcomes may associate with the immunological status, especially concerning the balance between immunoregulation and autoreactivity. Twenty-one type 1 diabetes patients were monitored after AHSCT and assessed every 6 months for duration of insulin independence, C-peptide levels, frequencies of islet-specific autoreactive CD8+ T cells (CTL), regulatory lymphocyte subsets, thymic function, and T-cell repertoire diversity. In median follow-up of 78 (range 15-106) months, all patients became insulin-independent, resuming insulin after median of 43 (range 6-100) months. Patients were retrospectively divided into short- or prolonged-remission groups, according to duration of insulin independence. For the entire follow-up, CD3+CD4+ T-cell numbers remained lower than baseline in both groups, whereas CD3+CD8+ T-cell levels did not change, resulting in a CD4/CD8 ratio inversion. Memory CTL comprehended most of T cells detected on long-term follow-up of patients after AHSCT. B cells reconstituted to baseline levels at 2-3 months post-AHSCT in both patient groups. In the prolonged-remission-group, baseline islet-specific T-cell autoreactivity persisted after transplantation, but regulatory T cell counts increased. Patients with lower frequencies of autoreactive islet-specific T cells remained insulin-free longer and presented greater C-peptide levels than those with lower frequencies of these cells. Therefore, immune monitoring identified a subgroup of patients with superior clinical outcome of AHSCT. Our study shows that improved immunoregulation may balance autoreactivity endorsing better metabolic outcomes in patients with lower frequencies of islet-specific T cells. Development of new strategies of AHSCT is necessary to increase frequency and function of T and B regulatory cells and decrease efficiently autoreactive islet-specific T and B memory cells in type 1 diabetes patients undergoing transplantation.

3.
Stem Cell Res Ther ; 7(1): 92, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27406064

RESUMO

BACKGROUND: Bone marrow multipotent mesenchymal stromal cells (MSCs) are a diverse subset of precursors that contribute to the homeostasis of the hematopoietic niche. MSCs can be isolated and expanded in vitro and have unique immunomodulatory and regenerative properties that make them attractive for the treatment of autoimmune diseases, including type 1 diabetes (T1D). Whether autologous or allogeneic MSCs are more suitable for therapeutic purposes has not yet been established. While autologous MSCs may present abnormal function, allogeneic cells may be recognized and rejected by the host immune system. Thus, studies that investigate biological characteristics of MSCs isolated from T1D patients are essential to guide future clinical applications. METHODS: Bone marrow-derived MSCs from recently diagnosed type 1 diabetes patients (T1D-MSCs) were compared with those from healthy individuals (C-MSCs) for morphological and immunophenotypic characteristics and for differentiation potential. Bioinformatics approaches allowed us to match absolute and differential gene expression of several adhesion molecules, immune mediators, growth factors, and their receptors involved with hematopoietic support and immunomodulatory properties of MSCs. Finally, the differentially expressed genes were collated for functional pathway enrichment analysis. RESULTS: T1D-MSCs and C-MSCs were similar for morphology, immunophenotype, and differentiation potential. Our absolute gene expression results supported previous literature reports, while also detecting new potential molecules related to bone marrow-derived MSC functions. T1D-MSCs showed intrinsic abnormalities in mRNA expression, including the immunomodulatory molecules VCAM-1, CXCL12, HGF, and CCL2. Pathway analyses revealed activation of sympathetic nervous system and JAK STAT signaling in T1D-MSCs. CONCLUSIONS: Collectively, our results indicate that MSCs isolated from T1D patients present intrinsic transcriptional alterations that may affect their therapeutic potential. However, the implications of these abnormalities in T1D development as well as in the therapeutic efficacy of autologous MSCs require further investigation.


Assuntos
Células da Medula Óssea/metabolismo , Diabetes Mellitus Tipo 1/genética , Células-Tronco Mesenquimais/metabolismo , RNA Mensageiro/genética , Transcriptoma , Adolescente , Adulto , Células da Medula Óssea/patologia , Estudos de Casos e Controles , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Feminino , Perfilação da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Masculino , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
4.
Clin Immunol ; 169: 47-57, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27318116

RESUMO

High dose immunosuppression followed by autologous hematopoietic stem cell transplantation (AHSCT) induces prolonged clinical remission in multiple sclerosis (MS) patients. However, how patient immune profiles are associated with clinical outcomes has not yet been completely elucidated. In this study, 37 MS patients were assessed for neurological outcomes, thymic function and long-term immune reconstitution after AHSCT. Patients were followed for a mean (SD) of 68.5 (13.9) months post-transplantation and were retrospectively clustered into progression- and non-progression groups, based on Expanded Disease Status Scale (EDSS) outcomes at last visit. After AHSCT, both patient groups presented increased regulatory T-cell subset counts, early expansion of central- and effector-memory CD8(+)T-cells and late thymic reactivation. However, the non-progression group presented early expansion of PD-1(+)CD8(+)T-cells and of PD-1-expressing CD19(+) B-cells. Here, we suggest that along with increased numbers of regulatory T-cell subsets, PD-1 inhibitory signaling is one possible immunoregulatory mechanism by which AHSCT restores immune tolerance in MS patients.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Esclerose Múltipla Recidivante-Remitente/terapia , Linfócitos T/imunologia , Timo/imunologia , Adulto , Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Progressão da Doença , Feminino , Humanos , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/imunologia , Avaliação de Resultados em Cuidados de Saúde , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Estudos Retrospectivos , Transdução de Sinais/imunologia , Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Tempo , Transplante Autólogo , Adulto Jovem
5.
Acta Haematol ; 133(4): 354-364, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25721555

RESUMO

BACKGROUND/AIMS: We investigated the effects of tyrosine kinase inhibitors (TKIs) on the expression of apoptosis-related genes (BCL-2 and death receptor family members) in chronic myeloid leukemia (CML) patients. METHODS: Peripheral blood mononuclear cells from 32 healthy subjects and 26 CML patients were evaluated before and after treatment with imatinib mesylate (IM) and dasatinib (DAS) by quantitative PCR. RESULTS: Anti-apoptotic genes (c-FLIP and MCL-1) were overexpressed and the pro-apoptotic BIK was reduced in CML patients. Expression of BMF, A1, c-FLIP, MCL-1, CIAP-2 and CIAP-1 was modulated by DAS. In IM-resistant patients, expression of A1, c-FLIP, CIAP-1 and MCL-1 was upregulated, and BCL-2, CIAP-2, BAK, BAX, BIK and FASL expression was downregulated. CONCLUSION: Taken together, our results point out that, in CML, DAS interferes with the apoptotic machinery regulation. In addition, the data suggest that apoptosis-related gene expression profiles are associated with primary resistance to IM.


Assuntos
Benzamidas/farmacologia , Benzamidas/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Adulto , Idoso , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Dasatinibe , Resistencia a Medicamentos Antineoplásicos , Quimioterapia Combinada , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Transcriptoma
6.
Cell Transplant ; 24(2): 151-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24256874

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system, due to an immune reaction against myelin proteins. Multipotent mesenchymal stromal cells (MSCs) present immunosuppressive effects and have been used for the treatment of autoimmune diseases. In our study, gene expression profile and in vitro immunomodulatory function tests were used to compare bone marrow-derived MSCs obtained from MS patients, at pre- and postautologous hematopoietic stem cell transplantation (AHSCT) with those from healthy donors. Patient MSCs comparatively exhibited i) senescence in culture; ii) similar osteogenic and adipogenic differentiation potential; iii) decreased expression of CD105, CD73, CD44, and HLA-A/B/C molecules; iv) distinct transcription at pre-AHSCT compared with control MSCs, yielding 618 differentially expressed genes, including the downregulation of TGFB1 and HGF genes and modulation of the FGF and HGF signaling pathways; v) reduced antiproliferative effects when pre-AHSCT MSCs were cocultured with allogeneic T-lymphocytes; vi) decreased secretion of IL-10 and TGF-ß in supernatants of both cocultures (pre- and post-AHSCT MSCs); and vii) similar percentages of regulatory cells recovered after MSC cocultures. The transcriptional profile of patient MSCs isolated 6 months posttransplantation was closer to pre-AHSCT samples than from healthy MSCs. Considering that patient MSCs exhibited phenotypic changes, distinct transcriptional profile and functional defects implicated in MSC immunomodulatory and immunosuppressive activity, we suggest that further MS clinical studies should be conducted using allogeneic bone marrow MSCs derived from healthy donors. We also demonstrated that treatment of MS patients with AHSCT does not reverse the transcriptional and functional alterations observed in patient MSCs.


Assuntos
Células da Medula Óssea/citologia , Células-Tronco Mesenquimais/metabolismo , Esclerose Múltipla/patologia , Transcriptoma , Adulto , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Análise por Conglomerados , Técnicas de Cocultura , Citocinas/análise , Feminino , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo , Esclerose Múltipla/terapia , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...